Thermophysical study of the binary mixtures of triethyl phosphate with N-methylformamide, N,N-dimethylformamide and N,N-dimethylacetamide – Experimental and theoretical approach - Publication - Bridge of Knowledge

Search

Thermophysical study of the binary mixtures of triethyl phosphate with N-methylformamide, N,N-dimethylformamide and N,N-dimethylacetamide – Experimental and theoretical approach

Abstract

Densities at (293.15, 298.15, 303.15 and 308.15) K, and viscosities and ultrasonic velocities at 298.15 K of binary liquid mixtures of triethyl phosphate with N-methylformamide, N,N-dimethylformamide and N,N-dimethylacetamide have been measured over the entire range of composition at p = 0.1 MPa. From the experimental data, values of excess molar volume, excess isentropic compressibility, viscosity deviation and excess Gibbs energy of activation for viscous flow have been calculated. These results were fitted to the Redlich-Kister-type polynomial equation. The viscosity deviations and the excess Gibbs energy were found to be positive for the all systems investigated, while the excess volumes and the excess isentropic compressibilities were negative for TEP + DMA and for TEP + DMF systems, and positive for mixtures TEP + NMF. These results were interpreted based on the strength of the specific interaction, size and shape of molecules. Molecular dynamics simulations were used to provide a detailed explanation of the differences between the TEP + NMF and other systems, which were ultimately traced to strong hydrogen bonding between NMF and TEP.

Citations

  • 1

    CrossRef

  • 0

    Web of Science

  • 3

    Scopus

Cite as

Full text

download paper
downloaded 82 times
Publication version
Accepted or Published Version
License
Creative Commons: CC-BY-NC-ND open in new tab

Keywords

Details

Category:
Articles
Type:
artykuły w czasopismach
Published in:
JOURNAL OF MOLECULAR LIQUIDS no. 304, pages 1 - 11,
ISSN: 0167-7322
Language:
English
Publication year:
2020
Bibliographic description:
Warmińska D., Śmiechowski M.: Thermophysical study of the binary mixtures of triethyl phosphate with N-methylformamide, N,N-dimethylformamide and N,N-dimethylacetamide – Experimental and theoretical approach// JOURNAL OF MOLECULAR LIQUIDS -Vol. 304, (2020), s.1-11
DOI:
Digital Object Identifier (open in new tab) 10.1016/j.molliq.2020.112778
Bibliography: test
  1. K. Xu, M.S. Ding, S. Zhang, J.L. Allen, T.R. Jow, An attempt to formulate nonflammable lithium ion electrolytes with alkyl phosphates and phosphazenes, J. Electrochem. Soc. 149 (2002) A622-A626. open in new tab
  2. J. Chang, J. Zuo, L. Zhang, G.S. O'Brien, T.S. Chung, Using green solvent, triethyl phos- phate (TEP), to fabricate highly porous PVDF hollow fiber membranes for mem- brane distillation, J. Membr. Sci. 539 (2017) 295-304. open in new tab
  3. Q. Li, Z.L. Xu, L.Y. Yu, Effects of mixed solvents and PVDF types on performances of PVDF microporous membranes, J. Appl. Polym. Sci. 115 (2010) 2277-2287. open in new tab
  4. K. Matsumoto, K. Inoue, K. Utsugi, A highly safe battery with a non-flammable triethyl-phosphate-based electrolyte, J. Power Sources 273 (2015) 954-958. open in new tab
  5. B.S. Lalia, N. Yoshimoto, M. Egashira, M. Morita, A mixture of triethylphosphate and ethylene carbonate as a safe additive for ionic liquid-based electrolytes of lithium ion batteries, J. Power Sources 195 (2010) 7426-7431. open in new tab
  6. J.J. Comor, M.M. Kopecni, Excess and partial excess molar volumes of mixing trimethyl-and triethylphospate with water, J. Solut. Chem. 20 (1991) 945-953. open in new tab
  7. J.C. Bollinger, G. Yvernault, T. Yvernault, Physical properties of the solvent mixtures triethylphosphate + hexamethylphosphoric triamide at 25°C, J. Solut. Chem. 7 (1978) 317-324. open in new tab
  8. J. Wawer, A. Płaczek, D. Warmińska, W. Grzybkowski, Usefulness of the Free Length Theory for assessment of the self-association of pure solvents, J. Mol. Liq. 149 (2009) 37-44. open in new tab
  9. S. Kannan, K. Kishore, Absolute viscosity and density of trisubstituted phosphoric es- ters, J. Chem. Eng. Data 44 (1999) 649-655. open in new tab
  10. C. Caleman, P.J. van Maaren, M. Hong, J.S. Hub, L.T. Costa, D. van der Spoel, Force field benchmark of organic liquids: density, enthalpy of vaporization, heat capacities, sur- face tension, isothermal compressibility, volumetric expansion coefficient, and di- electric constant, J. Chem. Theory Comput. 8 (2012) 61-74. open in new tab
  11. S. Mrad, C. Lafuente, M. Hichri, I. Khattech, Density, speed of sound, refractive index, and viscosity of the binary mixtures of N,N-dimethylacetamide with methanol and ethanol, J. Chem. Eng. Data 61 (2016) 2946-2953. open in new tab
  12. D. Warmińska, D. Lundberg, Solvation of alkaline earth metal ions in N,N- dimethylformamide and N,N-dimethylacetamide -a volumetric and acoustic study, J. Chem. Thermodyn. 92 (2016) 108-117. open in new tab
  13. T.M. Aminabhavi, B. Gopalakrishna, Density, viscosity, refractive index, and speed of sound in aqueous mixtures of N,N-dimethylformamide, dimethyl Sulfoxide, N,N- dimethylacetamide, acetonitrile, ethylene glycol, diethylene glycol, 1,4-dioxane, tet- rahydrofuran, 2-methoxyethanol, and 2-ethoxyethanol at 298.15 K, J. Chem. Eng. Data 40 (1995) 856-861. open in new tab
  14. M.N. Roy, I. Banik, D. Ekka, Physics and chemistry of an ionic liquid in some indus- trially important solvent media probed by physicochemical techniques, J. Chem. Thermodyn. 57 (2013) 230-237. open in new tab
  15. J.A. Riddick, W.B. Bunger, T.K. Sakano, Organic solvents: physical properties and methods of purification, Wiley, New York, 1986.
  16. P. Venkatesu, M.J. Lee, H.M. Lin, Volumetric properties of (N,N-dimethylformamide + aliphatic diethers) at temperatures ranging from (298.15 to 358.15) K, J. Chem. Thermodyn. 37 (2005) 996-1002. open in new tab
  17. A. Płaczek, H. Koziel, W. Grzybkowski, Apparent molar compressibilities and vol- umes of some 1,1-electrolytes in N,N-dimethylacetamide and N,N- dimethylformamide, J. Chem. Eng. Data 52 (2007) 699-706. open in new tab
  18. S. Taniewska-Osinska, A. Piekarska, A. Kacperska, Viscosities of NaI in water- formamide and water-N,N-dimethylformamide mixtures from 5 to 45°C, J. Solut. Chem. 12 (1983) 717-727. open in new tab
  19. P.K. Pandey, A. Awasthi, A. Awasthi, Acoustic, volumetric and spectroscopic investi- gations in binary mixtures of formamide + N-methylformamide + 2-chloroethanol at various temperatures, J. Mol. Liq. 187 (2013) 343-349. open in new tab
  20. K.J. Han, J.H. Oh, S.J. Park, J. Gmehling, Excess molar volumes and viscosity deviations for the ternary system N,N-dimethylformamide + N-methylformamide + water and the binary subsystems at 298.15 K, J. Chem. Eng. Data 50 (2005) 1951-1955. open in new tab
  21. D. Papamatthaiakis, F. Aroni, V. Havredaki, Isentropic compressibilities of (amide + water) mixtures: a comparative study, J. Chem. Thermodyn. 40 (2008) 107-118. open in new tab
  22. P.S. Sikdar, Physico-chemical exploration of solution behaviour of some metal per- chlorates prevailing in N-methyl formamide with the manifestation of ion solvent consequences, Thermochim. Acta 607 (2015) 53-59. open in new tab
  23. M.J. Abraham, T. Murtola, R. Schulz, S. Páll, J.C. Smith, B. Hess, E. Lindahl, GROMACS: high performance molecular simulations through multi-level parallelism from lap- tops to supercomputers, SoftwareX 1 (2015) 19-25. open in new tab
  24. W.L. Jorgensen, D.S. Maxwell, J. Tirado-Rives, Development and testing of the OPLS all-atom force field on conformational energetics and properties of organic liquids, J. Am. Chem. Soc. 118 (1996) 11225-11236. open in new tab
  25. W.L. Jorgensen, J. Tirado-Rives, Potential energy functions for atomic-level simula- tions of water and organic and biomolecular systems, Proc. Natl. Acad. Sci. U. S. A. 102 (2005) 6665-6670. open in new tab
  26. D. van der Spoel, P.J. van Maaren, C. Caleman, GROMACS molecule & liquid database, Bioinformatics 28 (2012) 752-753. open in new tab
  27. U. Essmann, L. Perera, M.L. Berkowitz, T. Darden, H. Lee, L.G. Pedersen, A smooth particle mesh Ewald method, J. Chem. Phys. 103 (1995) 8577-8593. open in new tab
  28. S. Páll, B. Hess, A flexible algorithm for calculating pair interactions on SIMD archi- tectures, Comput. Phys. Commun. 184 (2013) 2641-2650. open in new tab
  29. W.C. Swope, H.C. Andersen, P.H. Berens, K.R. Wilson, A computer simulation method for the calculation of equilibrium constants for the formation of physical clusters of molecules: application to small water clusters, J. Chem. Phys. 76 (1982) 637-649. open in new tab
  30. S. Nosé, A unified formulation of the constant temperature molecular dynamics methods, J. Chem. Phys. 81 (1984) 511-519. open in new tab
  31. W.G. Hoover, Canonical dynamics: equilibrium phase-space distributions, Phys. Rev. A 31 (1985) 1695-1697. open in new tab
  32. G.J. Martyna, M.E. Tuckerman, D.J. Tobias, M.L. Klein, Explicit reversible integrators for extended systems dynamics, Mol. Phys. 87 (1996) 1117-1157. open in new tab
  33. G.J. Martyna, D.J. Tobias, M.L. Klein, Constant pressure molecular dynamics algo- rithms, J. Chem. Phys. 101 (1994) 4177-4189. open in new tab
  34. M. Basu, T. Samanta, D. Das, Volumetric and compressibility studies on tri-n-butyl phosphate (TBP)-phase modifier (1-octanol, 1-decanol and isodecanol) interactions from T = (298.15 to 323.15) K, J. Chem. Thermodyn. 70 (2014) 1-12. open in new tab
  35. F. Hammami, S. Nasr, M. Oumezzine, R. Cortès, H-bonding in liquid N- methylformamide as studied by X-ray scattering, Biomol. Eng. 19 (2002) 201-205. open in new tab
  36. W.L. Jorgensen, C.J. Swenson, Optimized intermolecular potential functions for am- ides and peptides. Structure and properties of liquid amides, J. Am. Chem. Soc. 107 (1985) 569-578. open in new tab
  37. T. Yonezawa, I. Morishima, Self-association of N,N-dimethylformamide, N,N- dimethylacetamide, and N-methylpyrrolidone, Bull. Chem. Soc. Jpn. 39 (1966) 2346-2352. open in new tab
  38. F.S. Mortimer, Vibrational assignment and rotational isomerism in some simple or- ganic phosphates, Spectrochim. Acta 9 (1957) 270-281. open in new tab
  39. M. Roses, C. Rafols, J. Ortega, E. Bosch, Solute-solvent and solvent-solvent interac- tions in binary solvent mixtures. Part 1. A comparison of several preferential solva- tion models for describing ET(30) polarity of bipolar hydrogen bond acceptor- cosolvent mixtures, J. Chem. Soc. Perkin Trans. 2 (1995) 1607-1615. open in new tab
  40. L. George, K. Sankaran, K.S. Viswanathan, C.K. Mathews, Matrix-isolation infrared spectroscopy of organic phosphates, Appl. Spectrosc. 48 (1994) 7-12. open in new tab
  41. G.C. Benson, O. Kiyohara, Evaluation of excess isentropic compressibilities and isochoric heat capacities, J. Chem. Thermodyn. 11 (1979) 1061-1064. open in new tab
  42. Y. Marcus, The Properties of Solvents, J. Wiley & Sons, Chichester, 1998.
  43. F. Nabi, M.A. Malik, C.G. Jesudason, S.A. Al-Thabaiti, A review of molecular interac- tions in organic binary mixtures, Korean J. Chem. Eng. 31 (2014) 1505-1517. open in new tab
  44. E. Cherif, R. Jammazi, T. Othman, Thermodynamic properties of N,N- dimethylformamide + water, Phys. Chem. Liq. 52 (2014) 751-762. open in new tab
  45. O. Redlich, A.T. Kister, Algebraic representation of thermodynamic properties and the classification of solutions, Ind. Eng. Chem. 40 (1948) 345-348. open in new tab
  46. A. Ben-Naim, Preferential solvation in two-and in three-component systems, Pure Appl. Chem. 62 (1990) 25-34. open in new tab
  47. H. Kokubo, B.M. Pettitt, Preferential solvation in urea solutions at different concen- trations: properties from simulation studies, J. Phys. Chem. B 111 (2007) 5233-5242. open in new tab
  48. J. Zielkiewicz, Preferential solvation of amides by methanol -a comparison of mo- lecular dynamics calculations with the experimental data, TASK Q 5 (2001) 317-329. open in new tab
  49. A. Luzar, D. Chandler, Hydrogen-bond kinetics in liquid water, Nature 379 (1996) 55-57. open in new tab
  50. A. Luzar, Resolving the hydrogen bond dynamics conundrum, J. Chem. Phys. 113 (2000) 10663-10675. open in new tab
  51. B. Jović, A. Nikolić, E. Davidović, S. Petrović, N-H⋯O hydrogen bonding. An FT-IR, NIR study of N-methylformamide-ether systems, J. Serb. Chem. Soc. 75 (2010) 157-163. open in new tab
  52. M. Thomas, M. Brehm, R. Fligg, P. Vöhringer, B. Kirchner, Computing vibrational spectra from ab initio molecular dynamics, Phys. Chem. Chem. Phys. 15 (2013) 6608-6622. open in new tab
  53. E. DeGraaf, G.B.B.M. Sutherland, Vibrational spectrum of N-methyl formamide, J. Chem. Phys. 26 (1957) 716-717. open in new tab
  54. I. Suzuki, Infrared spectra and normal vibrations of N-methylformamides HCONHCH 3 , HCONDCH 3 , DCONHCH 3 and DCONDCH 3 , Bull. Chem. Soc. Jpn. 35 (1962) 540-551. open in new tab
  55. Z. Dega-Szafran, A. Hrynio, M. Szafran, A quantitative comparison of spectroscopic and energy data, in solution, of NHO and OHO hydrogen bonds and gas-phase pro- ton affinities: complexes of pyridines and pyridine N-oxides with acetic acids, J. Mol. Struct. 240 (1990) 159-174. open in new tab
Sources of funding:
  • Statutory activity/subsidy
Verified by:
Gdańsk University of Technology

seen 126 times

Recommended for you

Meta Tags