Toughness augmentation by fibrillation and yielding in nanostructured blends with recycled polyurethane as a modifier - Publication - Bridge of Knowledge

Search

Toughness augmentation by fibrillation and yielding in nanostructured blends with recycled polyurethane as a modifier

Abstract

In the present paper, we have carefully investigated the morphology and fracture mechanism of the recycled polyurethane (RPU) /epoxy blend system. The second phase (RPU) added to the epoxy resin has a positive effect on the overall mechanical properties. Interestingly, the recycled polymer has a remarkable effect on the fracture toughness of epoxy resin. The mechanism behind the fracture toughness improvement up on the addition of RPU was found to be very similar to that of the incorporation of hyperbranched polymers in epoxy resin. Brittle to ductile fracture was clear in the case of higher loadings such as 20 and 40 phr of RPU in the epoxy resin. The mechanism behind improvement of fracture toughness was found to fibrillation of the RPU phase which was evidenced by the fracture morphology. In fact the force applied to the epoxy matrix was effectively transferred to the added RPU phase due to its strong interaction with the epoxy phase. This effective transfer of force to the RPU phase protects the epoxy matrix without catastrophic failure and we observed 44% increase in G1C values at an addition of 40 phr RPU. This results in the extensive fibrillation of RPU which causes the generation of new surfaces. Thus the impact energy has been fully utilized by the RPU phase. The mechanism is termed as simultaneous reinforcing and toughening and normally reported as a result of cavitations and yielding. SEM, HRTEM and AFM analyses clearly demonstrated the fibrillated morphology of the fracture surface and the formation of nanostructures. This report is first of its kind in the case of both epoxy modification and the elastomer toughening.

Citations

  • 2 5

    CrossRef

  • 0

    Web of Science

  • 2 5

    Scopus

Authors (5)

Cite as

Full text

full text is not available in portal

Keywords

Details

Category:
Articles
Type:
artykuł w czasopiśmie wyróżnionym w JCR
Published in:
APPLIED SURFACE SCIENCE no. 442, pages 403 - 411,
ISSN: 0169-4332
Language:
English
Publication year:
2018
Bibliographic description:
Reghunadhan A., Datta J., Kalarikkal N., Haponiuk J., Thomas S.: Toughness augmentation by fibrillation and yielding in nanostructured blends with recycled polyurethane as a modifier// APPLIED SURFACE SCIENCE. -Vol. 442, (2018), s.403-411
DOI:
Digital Object Identifier (open in new tab) 10.1016/j.apsusc.2018.02.128
Verified by:
Gdańsk University of Technology

seen 150 times

Recommended for you

Meta Tags