Voltammetric and biological studies of folate-targeted non-lamellar lipid mesophases - Publication - Bridge of Knowledge

Search

Voltammetric and biological studies of folate-targeted non-lamellar lipid mesophases

Abstract

Folate-targeted lipid nanostructures are promising strategies for the development of biocompatible drug delivery systems. The objective of this study was to evaluate the efficacy of drug delivery to cancer cells by folate-targeted lipid mesophases, cubosomes (CUB) and hexosomes (HEX), loaded with doxorubicin (DOX). Three cancer-derived cell lines (KB, HeLa, T98G) exhibiting different expressional levels of folate receptor protein (FR) were used. DOX-loaded folate-targeted CUB and HEX dispersions were characterized via small angle X-ray scattering and dynamic light scattering to assess their physicochemical properties. DOX release characteristics were evaluated by electrochemical methods and demonstrated structure-dependent release capabilities. A slow release rate was observed for hexosomes, while cubosomes offered more rapid drug transport. Analysis of the release kinetics revealed that the total amount of DOX released from cubosomes is linearly dependent on the square root of time, implying that the release process follows the Higuchi diffusion model. Assessment of drug uptake performed on cancerderived cell lines demonstrated that DOX accumulation in cancer cell depends not only on the release capability of the applied mesophase, but also, on the level of folate receptor protein present in the cancer cells. FR-functionalized CUB and HEX enabled faster drug delivery to cancer cells as a result of receptorligand interactions. In addition, doxorubicin encapsulated into FR-cubosomes demonstrated significantly improved anti-tumor activity promoting the necrosis of tumor cells, while DOX-loaded FA-hexosomes acted via induction of the apoptotic state. Overall, our data indicates that folate-modified formulations are promising drug delivery systems and can be considered as potential therapeutic tools in the targeted therapy of FR-positive tumors.

Citations

  • 1 7

    CrossRef

  • 0

    Web of Science

  • 1 6

    Scopus

Cite as

Full text

download paper
downloaded 50 times
Publication version
Accepted or Published Version
License
Creative Commons: CC-BY-NC-ND open in new tab

Keywords

Details

Category:
Articles
Type:
artykuły w czasopismach
Published in:
ELECTROCHIMICA ACTA no. 299, pages 1 - 11,
ISSN: 0013-4686
Language:
English
Publication year:
2019
Bibliographic description:
Biernat J., Nazaruk E.: Voltammetric and biological studies of folate-targeted non-lamellar lipid mesophases// ELECTROCHIMICA ACTA -Vol. 299, (2019), s.1-11
DOI:
Digital Object Identifier (open in new tab) 10.1016/j.electacta.2018.12.164
Bibliography: test
  1. V. Luzzati, F. Husson, The structure of the liquid-crystalline phases of lipidwater systems, J. Cell Biol. 12 (1962) 207e219. https://doi.org/10.1083/jcb. 12.2.207. open in new tab
  2. A. Angelova, B. Angelov, R. Mutafchieva, S. Lesieur, P. Couvreur, Self-Assembled multicompartment liquid crystalline lipid carriers for protein, peptide, and nucleic acid drug delivery, Acc. Chem. Res. 44 (2011) 147e156. https:// doi.org/10.1021/ar100120v. open in new tab
  3. W.-K. Fong, R. Negrini, J.J. Vallooran, R. Mezzenga, B.J. Boyd, Responsive selfassembled nanostructured lipid systems for drug delivery and diagnostics, J. Colloid Interface Sci. 484 (2016) 320e339. https://doi.org/10.1016/j.jcis. 2016.08.077. open in new tab
  4. S.J. Fraser, X. Mulet, A. Hawley, F. Separovic, A. Polyzos, Controlling nanostructure and lattice parameter of the inverse bicontinuous cubic phases in functionalised phytantriol dispersions, J. Colloid Interface Sci. 408 (2013) 117e124. https://doi.org/10.1016/j.jcis.2013.07.002. open in new tab
  5. S. Phan, W.-K. Fong, N. Kirby, T. Hanley, B.J. Boyd, Evaluating the link between self-assembled mesophase structure and drug release, Int. J. Pharmacol. 421 (2011) 176e182. https://doi.org/10.1016/j.ijpharm.2011.09.022. open in new tab
  6. R. Negrini, R. Mezzenga, PH-responsive lyotropic liquid crystals for controlled drug delivery, Langmuir 27 (2011) 5296e5303. https://doi.org/10.1021/ la200591u. open in new tab
  7. B.J. Boyd, W.-K. Fong, Stimuli-responsive lipid-based self-assembled systems, Self-Assembled Supramol. Architect.: Lyotrop. Liquid Cryst. (2012) 257e288. https://doi.org/10.1002/9781118336632.ch9. open in new tab
  8. R. Negrini, A. Sanchez-Ferrer, R. Mezzenga, In fluence of electrostatic interactions on the release of charged molecules from lipid cubic phases, Langmuir 30 (2014) 4280e4288. https://doi.org/10.1021/la5008439. open in new tab
  9. J. Clogston, M. Caffrey, Controlling release from the lipidic cubic phase. Amino acids, peptides, proteins and nucleic acids, J. Contr. Release 107 (2005) 97e111. https://doi.org/10.1016/j.jconrel.2005.05.015. open in new tab
  10. S. Phan, W.-K. Fong, N. Kirby, T. Hanley, B.J. Boyd, Evaluating the link between self-assembled mesophase structure and drug release, Int. J. Pharmacol. 421 (2011) 176e182. https://doi.org/10.1016/j.ijpharm.2011.09.022. open in new tab
  11. W.-K. Fong, T. Hanley, B.J. Boyd, Stimuli responsive liquid crystals provide 'ondemand' drug delivery in vitro and in vivo, J. C ontr. Release 135 (2009) 218e226. https://doi.org/10.1016/j.jconrel.2009.01.009. open in new tab
  12. J.N. Israelachvili, D.J. Mitchell, B.W. Ninham, Theory of self-assembly of lipid bilayers and vesicles, BBA e Biomembranes 470 (1977) 185e201. https://doi. org/10.1016/0005-2736(77)90099-2. open in new tab
  13. V. Cherezov, J. Clogston, M.Z. Papiz, M. Caffrey, Room to move: Crystallizing membrane proteins in swollen lipidic mesophases, J. Mol. Biol. 357 (2006) 1605e1618. https://doi.org/10.1016/j.jmb.2006.01.049. open in new tab
  14. B. Angelov, A. Angelova, R. Mutafchieva, S. Lesieur, U. Vainio, V.M. Garamus, G.V. Jensen, J.S. Pedersen, SAXS investigation of a cubic to a sponge (L3) phase transition in self-assembled lipid nanocarriers, Phys. Chem. Chem. Phys. 13 (2011) 3073e3081. https://doi.org/10.1039/c0cp01029d. open in new tab
  15. N. Alcaraz, Q. Liu, E. Hanssen, A. Johnston, B.J. Boyd, Clickable cubosomes for antibody-free drug targeting and imaging applications, Bioconjug. Chem. 29 (2018) 149e157. https://doi.org/10.1021/acs.bioconjchem.7b00659. open in new tab
  16. J. Zhai, R.B. Luwor, N. Ahmed, R. Escalona, F.H. Tan, C. Fong, J. Ratcliffe, J.A. Scoble, C.J. Drummond, N. Tran, Paclitaxel -loaded self-assembled lipid nanoparticles as targeted drug delivery systems for the treatment of aggressive ovarian cancer, ACS Appl. Mater. Interfaces 10 (2018) 25174e25185. https://doi.org/10.1021/acsami.8b08125. open in new tab
  17. S. Aleandri, D. Bandera, R. Mezzenga, E.M. Landau, Biotinylated cubosomes: a versatile tool for active targeting and codelivery of paclitaxel and a fluorescein-based lipid dye, Langmuir 31 (2015) 12770e12776. https://doi. org/10.1021/acs.langmuir.5b03469. open in new tab
  18. C. Caltagirone, A.M. Falchi, S. Lampis, V. Lippolis, V. Meli, M. Monduzzi, L. Prodi, J. Schmidt, M. Sgarzi, Y. Talmon, R. Bizzarri, S. Murgia, Cancer- celltargeted theranostic cubosomes, Langmuir 30 (2014) 6228e6236. https://doi. org/10.1021/la501332u. open in new tab
  19. Y. Tian, J.C. Li, J.X. Zhu, N. Zhu, H.M. Zhang, L. Liang, L. Sun, Folic acid-targeted etoposide cubosomes for theranostic application of cancer cell imaging and therapy, Med. Sci. Monit. 23 (2017) 2426e2435. https://doi.org/10.12659/ MSM.904683. open in new tab
  20. V. Meli, C. Caltagirone, C. Sinico, F. Lai, A.M. Falchi, M. Monduzzi, M. ObiolsRabasa, G. Picci, A. Rosa, J. Schmidt, Y. Talmon, S. Murgia, Theranostic hexosomes for cancer treatments: an in vitro study, New J. Chem. 41 (2017) 1558e1565. https://doi.org/10.1039/c6nj03232j. open in new tab
  21. E. Nazaruk, M. Szle˛zak, E. Gorecka, R. Bilewicz, Y.M. Osornio, P. Uebelhart, E.M. Landau, Design and assembly of pH-sensitive lipidic cubic phase matrices for drug release, Langmuir 30 (2014) 1383e1390. https://doi.org/10.1021/ la403694e. open in new tab
  22. E. Nazaruk, P. Miszta, S. Filipek, E. Gorecka, E.M. Landau, R. Bilewicz, Lyotropic cubic phases for drug delivery: diffusion and sustained release from the mesophase evaluated by electrochemical methods, Langmuir 31 (2015) 12753e12761. https://doi.org/10.1021/acs.langmuir.5b03247. open in new tab
  23. E. Nazaruk, A. Majkowska-Pilip, R. Bilewicz, Lipidic cubic-phase nanoparticlescubosomes for efficient drug delivery to cancer cells, ChemPlusChem 82 (2017) 570e575. https://doi.org/10.1002/cplu.201600534. open in new tab
  24. E. Nazaruk, A. Majkowska-Pilip, M. Godlewska, M. Salamonczyk, D. Gawel, Electrochemical and biological characterization of lyotropic liquid crystalline phases - retardation of drug release from hexagonal mesophases, J. Electroanal. Chem. 813 (2018) 208e215. https://doi.org/10.1016/j.jelechem.2018.01.029. open in new tab
  25. M. Colombo, L. Fiandra, G. Alessio, S. Mazzucchelli, M. Nebuloni, C. De Palma, K. Kantner, B. Pelaz, R. Rotem, F. Corsi, W.J. Parak, D. Prosperi, Tumour homing and therapeutic effect of colloidal nanoparticles depend on the number of attached antibodies, Nat. Commun. 7 (2016) 13818. https://doi.org/10.1038/ ncomms13818. open in new tab
  26. C.V. Kulkarni, W. Wachter, G. Iglesias-Salto, S. Engelskirchen, S. Ahualli, Monoolein: a magic lipid? Phys. Chem. Chem. Phys. 13 (2011) 3004e3021. https://doi.org/10.1039/c0cp01539c. open in new tab
  27. M. Godlewska, W. Krasuska, B. Czarnocka, Biochemical properties of thyroid peroxidase (TPO) expressed in human breast and mammary-derived cell lines, PLoS One 13 (2018), e0193624. https://doi.org/10.1371/journal.pone. 0193624. open in new tab
  28. A. Majkowska-Pilip, M. Rius, F. Bruchertseifer, C. Apostolidis, M. Weis, M. Bonelli, M. Laurenza, L. Krolicki, A. Morgenstern, In vitro evaluation of 225 Ac- DOTA-substanceP for targeted alpha therapy of glioblastma multiforme, Chem. Biol. Drug Des. 92 (2018) 1344e1356. https://doi.org/10.1111/cbdd. 13199. open in new tab
  29. N. Parker, M.J. Turk, E. Westrick, J.D. Lewis, P.S. Low, C.P. Leamon, Folate receptor expression in carcinomas and normal tis sues determined by a quantitative radioligand binding assay, Anal. Biochem. 338 (2005) 284e293. https://doi.org/10.1016/j.ab.2004.12.026. open in new tab
  30. H. Chen, R. Ahn, J. Van den Bossche, D.H. Thompson, T.V. O'Halloran, Folatemediated intracellular drug delivery increases the anticancer efficacy of nanoparticulate formulation of arsenic trioxide, Mol. Canc. Therapeut. 8 (2009) 1955e1963. https://doi.org/10.1158/1535-7163.MCT-09-0045. open in new tab
  31. S. Gorle, M. Ariatti, M. Singh, Novel serum-tolerant lipoplexes target the folate receptor efficiently, Eur. J. Pharm. Sci. 59 (2014) 83e93. https://doi.org/10. 1016/j.ejps.2014.04.012. open in new tab
  32. Y. Yang, F. An, Z. Liu, X. Zhang, M. Zhou, W. Li, X. Hao, C.S. Lee, X. Zhang, Ultrabright and ultrastable near -infrared dye nanoparticles for in vitro and in vivo bioimaging, Biomaterials 33 (2012) 7803e7809. https://doi.org/10.1016/j.biomaterials.2012.07.006. open in new tab
Verified by:
Gdańsk University of Technology

seen 112 times

Recommended for you

Meta Tags