Didn't find any results in this catalog!
But we have some results in other catalogs.Filters
total: 1523
-
Catalog
displaying 1000 best results Help
Search results for: ANISOTROPIC ORLICZ SPACE
-
On the Fenchel–Moreau conjugate of G-function and the second derivative of the modular in anisotropic Orlicz spaces
PublicationIn this paper, we investigate the properties of the Fenchel–Moreau conjugate of G-function with respect to the coupling function c(x, A) = |A[x]2 |. We provide conditions that guarantee that the conjugate is also a G-function. We also show that if a G-function G is twice differentiable and its second derivative belongs to the Orlicz space generated by the Fenchel–Moreau conjugate of G then the modular generated by G is twice differentiable...
-
Quasilinear elliptic problem in anisotropic Orlicz–Sobolev space on unbounded domain
PublicationWe study a quasilinear elliptic problem $-\text{div} (\nabla \Phi(\nabla u))+V(x)N'(u)=f(u)$ with anisotropic convex function $\Phi$ on the whole $\R^n$. To prove existence of a nontrivial weak solution we use the mountain pass theorem for a functional defined on anisotropic Orlicz-Sobolev space $\WLPhispace(\R^n)$. As the domain is unbounded we need to use Lions type lemma formulated for Young functions. Our assumptions broaden...
-
Mountain pass type periodic solutions for Euler–Lagrange equations in anisotropic Orlicz–Sobolev space
PublicationUsing the Mountain Pass Theorem, we establish the existence of periodic solution for Euler–Lagrange equation. Lagrangian consists of kinetic part (an anisotropic G-function), potential part and a forcing term. We consider two situations: G satisfying at infinity and globally. We give conditions on the growth of the potential near zero for both situations.
-
Anisotropic Orlicz–Sobolev spaces of vector valued functions and Lagrange equations
PublicationIn this paper we study some properties of anisotropic Orlicz and Orlicz–Sobolev spaces of vector valued functions for a special class of G-functions. We introduce a variational setting for a class of Lagrangian Systems. We give conditions which ensure that the principal part of variational functional is finitely defined and continuously differentiable on Orlicz–Sobolev space.
-
Mountain pass solutions to Euler-Lagrange equations with general anisotropic operator
PublicationUsing the Mountain Pass Theorem we show that the problem \begin{equation*} \begin{cases} \frac{d}{dt}\Lcal_v(t,u(t),\dot u(t))=\Lcal_x(t,u(t),\dot u(t))\quad \text{ for a.e. }t\in[a,b]\\ u(a)=u(b)=0 \end{cases} \end{equation*} has a solution in anisotropic Orlicz-Sobolev space. We consider Lagrangian $\Lcal=F(t,x,v)+V(t,x)+\langle f(t), x\rangle$ with growth conditions determined by anisotropic G-function and some geometric conditions...
-
Existence of Two Periodic Solutions to General Anisotropic Euler-Lagrange Equations
PublicationAbstract. This paper is concerned with the following Euler-Lagrange system d/dtLv(t,u(t), ̇u(t)) =Lx(t,u(t), ̇u(t)) for a.e.t∈[−T,T], u(−T) =u(T), Lv(−T,u(−T), ̇u(−T)) =Lv(T,u(T), ̇u(T)), where Lagrangian is given by L=F(t,x,v) +V(t,x) +〈f(t),x〉, growth conditions aredetermined by an anisotropic G-function and some geometric conditions at infinity.We consider two cases: with and without forcing termf. Using a general version...
-
Adam Dąbrowski dr inż.
PeopleAdam Dabrowski has obtained a PhD in mechanical engineering from Gdańsk University of Technology and MSc. degree in mechatronics from Technische Universität Hamburg. He has an industry experience in Institute of Aviation Engineering Design Center (Warsaw, Poland) and SICK AG (Hamburg, Germany). Additionally, as an assistant at Gdansk University of Technology he teaught courses on mechanics, space mechanisms and dynamics of space...
-
Sociology of Space
e-Learning CoursesThe course is aimed at discussing the significance of the city as a topic of sociological analysis. During the seminar students will discuss the relation between sociology, architecture and space. Moreover, the debate will touch on the field of culture and its role in (re)creating and (re)constructing space. Discussions will also be related to the aspect of interactions in time and space. Contemporary dilemmas and challenges in...
-
Regularity of weak solutions for aclass of elliptic PDEs in Orlicz-Sobolev spaces
PublicationWe consider the elliptic partial differential equation in the divergence form $$-\div(\nabla G(\nabla u(x))) t + F_u (x, u(x)) = 0,$$ where $G$ is a convex, anisotropic function satisfying certain growth and ellipticity conditions We prove that weak solutions in $W^{1,G}$ are in fact of class $W^{2,2}_{loc}\cap W^{1,\infty}_{loc}$.
-
Laplace domain BEM for anisotropic transient elastodynamics
PublicationIn this paper, we describe Laplace domain boundary element method (BEM) for transient dynamic problems of three-dimensional finite homogeneous anisotropic linearly elastic solids. The employed boundary integral equations for displacements are regularized using the static traction fundamental solution. Modified integral expressions for the dynamic parts of anisotropic fundamental solutions and their first derivatives are obtained....