Didn't find any results in this catalog!
But we have some results in other catalogs.Search results for: orlicz-sobolev spaces
-
Anisotropic Orlicz–Sobolev spaces of vector valued functions and Lagrange equations
PublicationIn this paper we study some properties of anisotropic Orlicz and Orlicz–Sobolev spaces of vector valued functions for a special class of G-functions. We introduce a variational setting for a class of Lagrangian Systems. We give conditions which ensure that the principal part of variational functional is finitely defined and continuously differentiable on Orlicz–Sobolev space.
-
Regularity of weak solutions for aclass of elliptic PDEs in Orlicz-Sobolev spaces
PublicationWe consider the elliptic partial differential equation in the divergence form $$-\div(\nabla G(\nabla u(x))) t + F_u (x, u(x)) = 0,$$ where $G$ is a convex, anisotropic function satisfying certain growth and ellipticity conditions We prove that weak solutions in $W^{1,G}$ are in fact of class $W^{2,2}_{loc}\cap W^{1,\infty}_{loc}$.
-
Minimization of integral functionals in Sobolev spaces
PublicationPraca ma charakter przeglądowy i jest skierowana do młodych matematyków i doktorantów. Dotyczy problematyki omawianej przeze mnie na Zimowej Szkole Centrum Badań Nieliniowych im. J.P. Schaudera w Toruniu w roku 2009. Zawarłam w niej wybrane, znane wyniki dotyczące problemu minimalizacji funkcjonałów całkowych w przestrzeniach Sobolewa funkcji jednej zmiennej.
-
Quasilinear elliptic problem in anisotropic Orlicz–Sobolev space on unbounded domain
PublicationWe study a quasilinear elliptic problem $-\text{div} (\nabla \Phi(\nabla u))+V(x)N'(u)=f(u)$ with anisotropic convex function $\Phi$ on the whole $\R^n$. To prove existence of a nontrivial weak solution we use the mountain pass theorem for a functional defined on anisotropic Orlicz-Sobolev space $\WLPhispace(\R^n)$. As the domain is unbounded we need to use Lions type lemma formulated for Young functions. Our assumptions broaden...
-
Mountain pass type periodic solutions for Euler–Lagrange equations in anisotropic Orlicz–Sobolev space
PublicationUsing the Mountain Pass Theorem, we establish the existence of periodic solution for Euler–Lagrange equation. Lagrangian consists of kinetic part (an anisotropic G-function), potential part and a forcing term. We consider two situations: G satisfying at infinity and globally. We give conditions on the growth of the potential near zero for both situations.
-
On the Fenchel–Moreau conjugate of G-function and the second derivative of the modular in anisotropic Orlicz spaces
PublicationIn this paper, we investigate the properties of the Fenchel–Moreau conjugate of G-function with respect to the coupling function c(x, A) = |A[x]2 |. We provide conditions that guarantee that the conjugate is also a G-function. We also show that if a G-function G is twice differentiable and its second derivative belongs to the Orlicz space generated by the Fenchel–Moreau conjugate of G then the modular generated by G is twice differentiable...
-
A Generalized Version of the Lions-Type Lemma
PublicationIn this short paper, I recall the history of dealing with the lack of compactness of a sequence in the case of an unbounded domain and prove the vanishing Lions-type result for a sequence of Lebesgue-measurable functions. This lemma generalizes some results for a class of Orlicz–Sobolev spaces. What matters here is the behavior of the integral, not the space
-
Periodic solutions of Lagrangian systems under small perturbations
PublicationIn this paper we prove the existence of mountain pass periodic solutions of a certain class of generalized Lagrangian systems under small perturbations. We show that the found periodic solutions converge to a periodic solution of the unperturbed system if the perturbation tends to 0. The proof requires to work in a rather unusual (mixed) Orlicz–Sobolev space setting, which bears several challenges.
-
Mountain pass solutions to Euler-Lagrange equations with general anisotropic operator
PublicationUsing the Mountain Pass Theorem we show that the problem \begin{equation*} \begin{cases} \frac{d}{dt}\Lcal_v(t,u(t),\dot u(t))=\Lcal_x(t,u(t),\dot u(t))\quad \text{ for a.e. }t\in[a,b]\\ u(a)=u(b)=0 \end{cases} \end{equation*} has a solution in anisotropic Orlicz-Sobolev space. We consider Lagrangian $\Lcal=F(t,x,v)+V(t,x)+\langle f(t), x\rangle$ with growth conditions determined by anisotropic G-function and some geometric conditions...
-
Existence of Two Periodic Solutions to General Anisotropic Euler-Lagrange Equations
PublicationAbstract. This paper is concerned with the following Euler-Lagrange system d/dtLv(t,u(t), ̇u(t)) =Lx(t,u(t), ̇u(t)) for a.e.t∈[−T,T], u(−T) =u(T), Lv(−T,u(−T), ̇u(−T)) =Lv(T,u(T), ̇u(T)), where Lagrangian is given by L=F(t,x,v) +V(t,x) +〈f(t),x〉, growth conditions aredetermined by an anisotropic G-function and some geometric conditions at infinity.We consider two cases: with and without forcing termf. Using a general version...