Filters
total: 6842
filtered: 1309
-
Catalog
- Publications 2413 available results
- Journals 37 available results
- People 123 available results
- Inventions 6 available results
- Projects 12 available results
- Laboratories 3 available results
- Research Teams 4 available results
- Research Equipment 28 available results
- e-Learning Courses 1096 available results
- Events 57 available results
- Open Research Data 3063 available results
Chosen catalog filters
displaying 1000 best results Help
Search results for: EDUKACJA 4.0
-
Long-term measurement of physiological parameters - patient 4 (serie 4)
Open Research DataThe data set was obtained during the project focus on the determination of changes in physiological parameters due to a stressful situation.The measurements were conducted with the system which consists e.g. sensors of temperature, skin resistance, and pulse.A long-term (4 hours) measurement of physiological parameters was performed on the healthy volunteers...
-
Long-term measurement of physiological parameters - patient 4 (serie 3)
Open Research DataThe data set was obtained during the project focus on the determination of changes in physiological parameters due to a stressful situation.The measurements were conducted with the system which consists e.g. sensors of temperature, skin resistance, and pulse.A long-term (4 hours) measurement of physiological parameters was performed on the healthy volunteers...
-
Long-term measurement of physiological parameters - patient 4 (serie 6)
Open Research DataThe data set was obtained during the project focus on the determination of changes in physiological parameters due to a stressful situation.The measurements were conducted with the system which consists e.g. sensors of temperature, skin resistance, and pulse.A long-term (4 hours) measurement of physiological parameters was performed on the healthy volunteers...
-
Long-term measurement of physiological parameters - patient 4 (serie 11)
Open Research DataThe data set was obtained during the project focus on the determination of changes in physiological parameters due to a stressful situation.The measurements were conducted with the system which consists e.g. sensors of temperature, skin resistance, and pulse.A long-term (4 hours) measurement of physiological parameters was performed on the healthy volunteers...
-
Long-term measurement of physiological parameters - patient 4 (serie 19)
Open Research DataThe data set was obtained during the project focus on the determination of changes in physiological parameters due to a stressful situation.The measurements were conducted with the system which consists e.g. sensors of temperature, skin resistance, and pulse.A long-term (4 hours) measurement of physiological parameters was performed on the healthy volunteers...
-
Thermographic imaging of electrochemical double layer capacitors during cycling charging - discharging 0 - 2,75 V at 241 mA. Sample 24, run #4.
Open Research DataDataset contains thermal images of prototype electrochemical double layer capacitor taken during cyclic charging - discharging. The sample was charged to 2,75 V and discharged to 10 mV by constant current 241 mA, experiment run #4.The images were taken with thermographic camera VigoCAM V50. The sample was covered by black graphite paint to ensure uniform...
-
Thermographic imaging of electrochemical double layer capacitors during cycling charging - discharging 0 - 3,1 V at 561 mA. Sample 71, run #4.
Open Research DataDataset contains thermal images of prototype electrochemical double layer capacitor taken during cyclic charging - discharging. The sample was charged to 3,1 V and discharged to 10 mV by constant current 561 mA. Sample 71, experiment run #4.The images were taken with thermographic camera VigoCAM V50. The sample was covered by black graphite paint to...
-
Thermographic imaging of electrochemical double layer capacitors during cycling charging - discharging 0 - 2,7 V at 306 mA. Sample 51, run #4.
Open Research DataDataset contains thermal images of prototype electrochemical double layer capacitor taken during cyclic charging - discharging. The sample was charged to 2,7 V and discharged to 10 mV by constant current 306 mA. Experiment run #4. The images were taken with thermographic camera VigoCAM V50. The sample was covered by black graphite paint to ensure uniform...
-
Thermographic imaging of electrochemical double layer capacitors during cycling charging - discharging 0 - 2,7 V at 534 mA. Sample J53, run #4.
Open Research DataDataset contains thermal images of prototype electrochemical double layer capacitor taken during cyclic charging - discharging. The sample was charged to 2,7 V and discharged to 10 mV by constant current 534 mA. Sample J53, experiment run #4. The images were taken with thermographic camera VigoCAM V50. The sample was covered by black graphite paint...
-
Thermographic imaging of electrochemical double layer capacitors during cycling charging - discharging 0 - 2,7 V at 204 mA. Sample 51, run #4.
Open Research DataDataset contains thermal images of prototype electrochemical double layer capacitor taken during cyclic charging - discharging. The sample was charged to 2,7 V and discharged to 10 mV by constant current 204 mA. Experiment run #4. This experiment was preceded by experiment 10.34808/jf84-x137. The images were taken with thermographic camera VigoCAM V50....
-
Thermographic imaging of electrochemical double layer capacitors during cycling charging - discharging 0 - 3,6 V at 420 mA. Sample 103, run #4.
Open Research DataDataset contains thermal images of prototype electrochemical double layer capacitor taken during cyclic charging - discharging. The sample was charged to 3,6 V and discharged to 10 mV by constant current 420 mA. Sample 103, experiment run #4. Continuation of experiment at high voltage to accelerate the ageing process.The images were taken with thermographic...
-
Description of symmetrical prolate ellipsoid magnetic signature parameters-Be = 50 mT, I = 70 deg, z = 10 m, q = 90 deg, j = 135 deg, a =4 m, e = 4, mr = 100
Open Research DataThe Earth magnetic field (Fig.1): BE – total magnetic flux density, BEx – x component of the Earth magnetic flux density, BEy = 0 y component of the Earth magnetic flux density, BEz – z component of the Earth magnetic flux density, I – inclination of the Earth magnetic field.
-
Description of symmetrical prolate ellipsoid magnetic signature parameters-Be = 50 mT, I = 70 deg, z = 20 m, q = 90 deg, j = 135 deg, a =4 m, e = 4, mr = 100
Open Research DataThe Earth magnetic field (Fig.1): BE – total magnetic flux density, BEx – x component of the Earth magnetic flux density, BEy = 0 y component of the Earth magnetic flux density, BEz – z component of the Earth magnetic flux density, I – inclination of the Earth magnetic field.
-
Description of symmetrical prolate ellipsoid magnetic signature parameters-Be = 50 mT, I = 70 deg, z = 50 m, q = 100 deg, j = 135 deg, a =4 m, e = 4, mr = 100
Open Research DataThe Earth magnetic field (Fig.1): BE – total magnetic flux density, BEx – x component of the Earth magnetic flux density, BEy = 0 y component of the Earth magnetic flux density, BEz – z component of the Earth magnetic flux density, I – inclination of the Earth magnetic field.
-
Description of symmetrical prolate ellipsoid magnetic signature parameters-Be = 50 mT, I = 70 deg, z = 20 m, q = 100 deg, j = 135 deg, a =4 m, e = 4, mr = 100
Open Research DataThe Earth magnetic field (Fig.1): BE – total magnetic flux density, BEx – x component of the Earth magnetic flux density, BEy = 0 y component of the Earth magnetic flux density, BEz – z component of the Earth magnetic flux density, I – inclination of the Earth magnetic field.
-
Description of symmetrical prolate ellipsoid magnetic signature parameters-Be = 50 mT, I = 70 deg, z = 100 m, q = 90 deg, j = 135 deg, a =4 m, e = 4, mr = 100
Open Research DataThe Earth magnetic field (Fig.1): BE – total magnetic flux density, BEx – x component of the Earth magnetic flux density, BEy = 0 y component of the Earth magnetic flux density, BEz – z component of the Earth magnetic flux density, I – inclination of the Earth magnetic field.
-
Description of symmetrical prolate ellipsoid magnetic signature parameters-Be = 50 mT, I = 70 deg, z = 200 m, q = 180 deg, j = 135 deg, a =4 m, e = 4, mr = 100
Open Research DataThe Earth magnetic field (Fig.1): BE – total magnetic flux density, BEx – x component of the Earth magnetic flux density, BEy = 0 y component of the Earth magnetic flux density, BEz – z component of the Earth magnetic flux density, I – inclination of the Earth magnetic field.
-
Description of symmetrical prolate ellipsoid magnetic signature parameters-Be = 50 mT, I = 70 deg, z = 200 m, q = 80 deg, j = 135 deg, a =4 m, e = 4, mr = 100
Open Research DataThe Earth magnetic field (Fig.1): BE – total magnetic flux density, BEx – x component of the Earth magnetic flux density, BEy = 0 y component of the Earth magnetic flux density, BEz – z component of the Earth magnetic flux density, I – inclination of the Earth magnetic field.
-
Description of symmetrical prolate ellipsoid magnetic signature parameters-Be = 50 mT, I = 70 deg, z = 50 m, q = 80 deg, j = 135 deg, a =4 m, e = 4, mr = 100
Open Research DataThe Earth magnetic field (Fig.1): BE – total magnetic flux density, BEx – x component of the Earth magnetic flux density, BEy = 0 y component of the Earth magnetic flux density, BEz – z component of the Earth magnetic flux density, I – inclination of the Earth magnetic field.
-
Description of symmetrical prolate ellipsoid magnetic signature parameters-Be = 50 mT, I = 70 deg, z = 200 m, q = 90 deg, j = 135 deg, a =4 m, e = 4, mr = 100
Open Research DataThe Earth magnetic field (Fig.1): BE – total magnetic flux density, BEx – x component of the Earth magnetic flux density, BEy = 0 y component of the Earth magnetic flux density, BEz – z component of the Earth magnetic flux density, I – inclination of the Earth magnetic field.
-
Description of symmetrical prolate ellipsoid magnetic signature parameters-Be = 50 mT, I = 70 deg, z = 10 m, q = 100 deg, j = 135 deg, a =4 m, e = 4, mr = 100
Open Research DataThe Earth magnetic field (Fig.1): BE – total magnetic flux density, BEx – x component of the Earth magnetic flux density, BEy = 0 y component of the Earth magnetic flux density, BEz – z component of the Earth magnetic flux density, I – inclination of the Earth magnetic field.
-
Description of symmetrical prolate ellipsoid magnetic signature parameters-Be = 50 mT, I = 70 deg, z = 50 m, q = 90 deg, j = 135 deg, a =4 m, e = 4, mr = 100
Open Research DataThe Earth magnetic field (Fig.1): BE – total magnetic flux density, BEx – x component of the Earth magnetic flux density, BEy = 0 y component of the Earth magnetic flux density, BEz – z component of the Earth magnetic flux density, I – inclination of the Earth magnetic field.
-
Description of symmetrical prolate ellipsoid magnetic signature parameters-Be = 50 mT, I = 70 deg, z = 20 m, q = 80 deg, j = 135 deg, a =4 m, e = 4, mr = 100
Open Research DataThe Earth magnetic field (Fig.1): BE – total magnetic flux density, BEx – x component of the Earth magnetic flux density, BEy = 0 y component of the Earth magnetic flux density, BEz – z component of the Earth magnetic flux density, I – inclination of the Earth magnetic field.
-
Description of symmetrical prolate ellipsoid magnetic signature parameters-Be = 50 mT, I = 70 deg, z = 100 m, q = 100 deg, j = 135 deg, a =4 m, e = 4, mr = 100
Open Research DataThe Earth magnetic field (Fig.1): BE – total magnetic flux density, BEx – x component of the Earth magnetic flux density, BEy = 0 y component of the Earth magnetic flux density, BEz – z component of the Earth magnetic flux density, I – inclination of the Earth magnetic field.
-
Description of symmetrical prolate ellipsoid magnetic signature parameters-Be = 50 mT, I = 70 deg, z = 100 m, q = 80 deg, j = 135 deg, a =4 m, e = 4, mr = 100
Open Research DataThe Earth magnetic field (Fig.1): BE – total magnetic flux density, BEx – x component of the Earth magnetic flux density, BEy = 0 y component of the Earth magnetic flux density, BEz – z component of the Earth magnetic flux density, I – inclination of the Earth magnetic field.
-
Description of symmetrical prolate ellipsoid magnetic signature parameters-Be = 50 mT, I = 70 deg, z = 10 m, q = 80 deg, j = 135 deg, a =4 m, e = 4, mr = 100
Open Research DataThe Earth magnetic field (Fig.1): BE – total magnetic flux density, BEx – x component of the Earth magnetic flux density, BEy = 0 y component of the Earth magnetic flux density, BEz – z component of the Earth magnetic flux density, I – inclination of the Earth magnetic field.
-
Calibration of NTC 10k thermistors in temperature of 0 C
Open Research DataThe presented data set is part of the research aimed at determining the actual characteristics of each thermistor in a package of twenty NTC10k type sensors.
-
The luminescence study of Sc2(1–x)Ga2xO3:Cr3+/4+ coumpounds
Open Research DataThe growing interest in the use of near-infrared (NIR) radiation for spectroscopy, optical communication, and medical applications spanning both NIR-I (700–900 nm) and NIR-II (900–1700 nm) has driven the need for new NIR light sources. NIR phosphor-converted light-emitting diodes (pc-LEDs) are expected to replace traditional lamps mainly due to their...
-
Long-term measurement of physiological parameters (4)
Open Research DataThe data set was obtained during the project focus on the determination of changes in physiological parameters due to a stressful situation.The measurements were conducted with the system which consists e.g. sensors of temperature, skin resistance, and pulse.Long-term (up to 90 minutes) measurement of physiological parameters was performed on the healthy...
-
Calculations of the resistance values of 20 thermistors at 0°C
Open Research DataThe presented data set is part of the research aimed at determining the actual characteristics of each thermistor in a package of twenty NTC10k type sensors.
-
The luminescence study ofNaK2Li[Li3SiO4]4:Eu coumpounds.
Open Research DataNarrowband green phosphors with high quantum efficiency are required for backlighting white light-emitting diode (WLED) devices. Materials from the A[Li3SiO4]4:Eu2+ family have recently been proposed as having superior properties to industry-standard β-SiAlON green phosphors. Here, we show that a cheap, easily synthesized host NaK2Li[Li3SiO4]4 (NKLLSO)...
-
Description of symmetrical prolate ellipsoid magnetic signature parameters-Be = 50 mT, I = 70 deg, z = 10 m, q = 100 deg, j = 45 deg, a =4 m, e = 4, mr = 100
Open Research DataThe Earth magnetic field (Fig.1): BE – total magnetic flux density, BEx – x component of the Earth magnetic flux density, BEy = 0 y component of the Earth magnetic flux density, BEz – z component of the Earth magnetic flux density, I – the inclination of the Earth magnetic field.
-
Description of symmetrical prolate ellipsoid magnetic signature parameters-Be = 50 mT, I = 70 deg, z = 100 m, q = 90 deg, j = 45 deg, a =4 m, e = 4, mr = 100
Open Research DataThe Earth magnetic field (Fig.1): BE – total magnetic flux density, BEx – x component of the Earth magnetic flux density, BEy = 0 y component of the Earth magnetic flux density, BEz – z component of the Earth magnetic flux density, I – the inclination of the Earth magnetic field.
-
Description of symmetrical prolate ellipsoid magnetic signature parameters-Be = 50 mT, I = 70 deg, z = 20 m, q = 100 deg, j = 90 deg, a =4 m, e = 4, mr = 100
Open Research DataThe Earth magnetic field (Fig.1): BE – total magnetic flux density, BEx – x component of the Earth magnetic flux density, BEy = 0 y component of the Earth magnetic flux density, BEz – z component of the Earth magnetic flux density, I – the inclination of the Earth magnetic field.
-
Description of symmetrical prolate ellipsoid magnetic signature parameters-Be = 50 mT, I = 70 deg, z = 10 m, q = 90 deg, j = 45 deg, a =4 m, e = 4, mr = 100
Open Research DataThe Earth magnetic field (Fig.1): BE – total magnetic flux density, BEx – x component of the Earth magnetic flux density, BEy = 0 y component of the Earth magnetic flux density, BEz – z component of the Earth magnetic flux density, I – the inclination of the Earth magnetic field.
-
Description of symmetrical prolate ellipsoid magnetic signature parameters-Be = 50 mT, I = 70 deg, z = 200 m, q = 80 deg, j = 45 deg, a =4 m, e = 4, mr = 100
Open Research DataThe Earth magnetic field (Fig.1): BE – total magnetic flux density, BEx – x component of the Earth magnetic flux density, BEy = 0 y component of the Earth magnetic flux density, BEz – z component of the Earth magnetic flux density, I – the inclination of the Earth magnetic field.
-
Description of symmetrical prolate ellipsoid magnetic signature parameters- Be = 50 mT, I = 70 deg, z = 100 m, q = 80 deg, j = 45 deg, a =4 m, e = 4, mr = 100
Open Research DataThe Earth magnetic field (Fig.1): BE – total magnetic flux density, BEx – x component of the Earth magnetic flux density, BEy = 0 y component of the Earth magnetic flux density, BEz – z component of the Earth magnetic flux density, I – the inclination of the Earth magnetic field.
-
Description of symmetrical prolate ellipsoid magnetic signature parameters-Be = 50 mT, I = 70 deg, z = 200 m, q = 100 deg, j = 45 deg, a =4 m, e = 4, mr = 100
Open Research DataThe Earth magnetic field (Fig.1): BE – total magnetic flux density, BEx – x component of the Earth magnetic flux density, BEy = 0 y component of the Earth magnetic flux density, BEz – z component of the Earth magnetic flux density, I – the inclination of the Earth magnetic field.
-
Description of symmetrical prolate ellipsoid magnetic signature parameters-Be = 50 mT, I = 70 deg, z = 50 m, q = 80 deg, j = 45 deg, a =4 m, e = 4, mr = 100
Open Research DataThe Earth magnetic field (Fig.1): BE – total magnetic flux density, BEx – x component of the Earth magnetic flux density, BEy = 0 y component of the Earth magnetic flux density, BEz – z component of the Earth magnetic flux density, I – the inclination of the Earth magnetic field.
-
Description of symmetrical prolate ellipsoid magnetic signature parameters-Be = 50 mT, I = 70 deg, z = 20 m, q = 80 deg, j = 45 deg, a =4 m, e = 4, mr = 100
Open Research DataThe Earth magnetic field (Fig.1): BE – total magnetic flux density, BEx – x component of the Earth magnetic flux density, BEy = 0 y component of the Earth magnetic flux density, BEz – z component of the Earth magnetic flux density, I – the inclination of the Earth magnetic field.
-
Description of symmetrical prolate ellipsoid magnetic signature parameters-Be = 50 mT, I = 70 deg, z = 10 m, q = 80 deg, j = 45 deg, a =4 m, e = 4, mr = 100
Open Research DataThe Earth magnetic field (Fig.1): BE – total magnetic flux density, BEx – x component of the Earth magnetic flux density, BEy = 0 y component of the Earth magnetic flux density, BEz – z component of the Earth magnetic flux density, I – the inclination of the Earth magnetic field.
-
Description of symmetrical prolate ellipsoid magnetic signature parameters-Be = 50 mT, I = 70 deg, z = 200 m, q = 90 deg, j = 45 deg, a =4 m, e = 4, mr = 100
Open Research DataThe Earth magnetic field (Fig.1): BE – total magnetic flux density, BEx – x component of the Earth magnetic flux density, BEy = 0 y component of the Earth magnetic flux density, BEz – z component of the Earth magnetic flux density, I – the inclination of the Earth magnetic field.
-
Description of symmetrical prolate ellipsoid magnetic signature parameters-Be = 50 mT, I = 70 deg, z = 20 m, q = 90 deg, j = 45 deg, a =4 m, e = 4, mr = 100
Open Research DataThe Earth magnetic field (Fig.1): BE – total magnetic flux density, BEx – x component of the Earth magnetic flux density, BEy = 0 y component of the Earth magnetic flux density, BEz – z component of the Earth magnetic flux density, I – the inclination of the Earth magnetic field.
-
Description of symmetrical prolate ellipsoid magnetic signature parameters-Be = 50 mT, I = 70 deg, z = 100 m, q = 100 deg, j = 45 deg, a =4 m, e = 4, mr = 100
Open Research DataThe Earth magnetic field (Fig.1): BE – total magnetic flux density, BEx – x component of the Earth magnetic flux density, BEy = 0 y component of the Earth magnetic flux density, BEz – z component of the Earth magnetic flux density, I – the inclination of the Earth magnetic field.
-
Description of symmetrical prolate ellipsoid magnetic signature parameters- Be = 50 mT, I = 70 deg, z = 50 m, q = 100 deg, j = 45 deg, a =4 m, e = 4, mr = 100
Open Research DataThe Earth magnetic field (Fig.1): BE – total magnetic flux density, BEx – x component of the Earth magnetic flux density, BEy = 0 y component of the Earth magnetic flux density, BEz – z component of the Earth magnetic flux density, I – the inclination of the Earth magnetic field.
-
Description of symmetrical prolate ellipsoid magnetic signature parameters-Be = 50 mT, I = 70 deg, z = 50 m, q = 90 deg, j = 45 deg, a =4 m, e = 4, mr = 100
Open Research DataThe Earth magnetic field (Fig.1): BE – total magnetic flux density, BEx – x component of the Earth magnetic flux density, BEy = 0 y component of the Earth magnetic flux density, BEz – z component of the Earth magnetic flux density, I – the inclination of the Earth magnetic field.
-
Long-term measurement of physiological parameters - child (4)
Open Research DataThe data set was obtained during the project focus on the determination of changes in physiological parameters due to a stressful situation.The measurements were conducted with the system which consists e.g. sensors of temperature, skin resistance, and pulse.Long-term (up to 120 minutes) measurement of physiological parameters was performed on the healthy...
-
Mechanical properties of VL E27 steel for shipbuilding – tensile test in 0°C
Open Research DataOne of the basic divisions of steels used for ship hulls and ocean engineering structures is the division into: normal strength steels, high strength steels and extra high strength steels. The belonging to the group is determined by the mechanical properties of the steel, such as: yield point, ultimate strength and plastic elongation after fracture....
-
Long-term measurement of physiological parameters - patient 4 (serie 17)
Open Research DataThe data set was obtained during the project focus on the determination of changes in physiological parameters due to a stressful situation.The measurements were conducted with the system which consists e.g. sensors of temperature, skin resistance, and pulse.A long-term (5 hours) measurement of physiological parameters was performed on the healthy volunteers...
-
Long-term measurement of physiological parameters - patient 4 (serie 12)
Open Research DataThe data set was obtained during the project focus on the determination of changes in physiological parameters due to a stressful situation.The measurements were conducted with the system which consists e.g. sensors of temperature, skin resistance, and pulse.A long-term (5 hours) measurement of physiological parameters was performed on the healthy volunteers...