Search results for: ALGORYTMY ONLINE - Bridge of Knowledge

Search

Search results for: ALGORYTMY ONLINE

Filters

total: 10
filtered: 4

clear all filters


Chosen catalog filters

  • Category

  • Year

  • Options

clear Chosen catalog filters disabled

Search results for: ALGORYTMY ONLINE

  • Music Information Retrieval – Soft Computing versus Statistics . Wyszukiwanie informacji muzycznej - algorytmy uczące versus metody statystyczne

    Publication

    - Year 2015

    Music Information Retrieval (MIR) is an interdisciplinary research area that covers automated extraction of information from audio signals, music databases and services enabling the indexed information searching. In the early stages the primary focus of MIR was on music information through Query-by-Humming (QBH) applications, i.e. on identifying a piece of music by singing (singing/whistling), while more advanced implementations...

    Full text to download in external service

  • Multi-agent graph searching and exploration algorithms

    Publication

    - Year 2020

    A team of mobile entities, which we refer to as agents or searchers interchangeably, starting from homebases needs to complete a given task in a graph.The goal is to build a strategy, which allows agents to accomplish their task. We analyze strategies for their effectiveness (e.g., the number of used agents, the total number of performed moves by the agents or the completion time).Currently, the fields of on-line (i.e., agents...

    Full text available to download

  • The maximum edge-disjoint paths problem in complete graphs

    Publication

    Rozważono problem ścieżek krawędziowo rozłącznych w grafach pełnych. Zaproponowano wielomianowe algorytmy: 3.75-przybliżony (off-line) oraz 6.47-przybliżony (on-line), poprawiając tym samym wyniki wcześniej znane z literatury [P. Carmi, T. Erlebach, Y. Okamoto, Greedy edge-disjoint paths in complete graphs, in: Proc. 29th Workshop on Graph Theoretic Concepts in Computer Science, in: LNCS, vol. 2880, 2003, pp. 143-155]. Ponadto...

    Full text available to download

  • Fast Collaborative Graph Exploration

    Publication

    - LECTURE NOTES IN COMPUTER SCIENCE - Year 2013

    We study the following scenario of online graph exploration. A team of k agents is initially located at a distinguished vertex r of an undirected graph. At every time step, each agent can traverse an edge of the graph. All vertices have unique identifiers, and upon entering a vertex, an agent obtains the list of identifiers of all its neighbors. We ask how many time steps are required to complete exploration, i.e., to make sure...

    Full text to download in external service