Filters
total: 6
filtered: 5
Chosen catalog filters
Search results for: ROZWIĄZANIA HOMOKLINICZNE
-
Homoclinic solutions for nonautonomous second order Hamiltonian
PublicationW pracy dowodzi się istnienia rozwiązań homoklinicznych dla pewnych typów równań różniczkowych zwyczajnych drugiego rzędu typu hamiltonowskiego.
-
Almost homoclinic solutions for the second order Hamiltonian systems
PublicationW niniejszej pracy badam istnienie rozwiązań prawie homoklinicznych (almost homoclinic) dla układu Hamiltona rzędu drugiego (układu Newtona): ü(t) + V_{u}(t,u) = f(t), gdzie t є R, u є R^{n}, V(t,u) = -K(t,u) + W(t,u), K,W: R x R^{n} → R są klasy C^{1}, K spełnia warunek ''pinching'', W_{u}(t,u)=o(|u|), gdy |u| → 0 jednostajnie względem t, f: R → R^{n} jest funkcją ciągłą, niezerową i odpowiednio małą w L^{2}(R,R^{n}). Przy tych...
-
An approximative scheme of finding almost homoclinic solutions for a class of Newtonian systems
PublicationW niniejszej pracy badamy istnienie rozwiązań prawie homoklinicznych (ang. almost homoclinic solutions) dla pewnej klasy układów Newtona. Rozwiązanie prawie homokliniczne otrzymujemy jako granicę ciągu rozwiązań okresowych dla pewnego ciągu równań różniczkowych.
-
The existence and multiplicity of heteroclinic and homoclinic orbits for a class of singular Hamiltonian systems in R^2
PublicationW niniejszej pracy badamy autonomiczne układy Hamiltona na płaszczyźnie z potencjałem, który ma punkt osobliwy x, globalne minimum równe zero osiągane w punktach a i b różnych od x oraz spełnia warunek typu Gordona w otoczeniu punktu osobliwego. Wykorzystując metody wariacyjne i pojęcie rotacji krzywej wykazaliśmy, że istnieją co najmniej dwa rozwiązania, które omijają punkt osobliwy i łączą {a,b} z {a,b}.
-
Homoclinic solutions for a class of autonomous second order Hamiltonian systems with a superquadratic potential
PublicationW niniejszej pracy udowodniliśmy istnienie nietrywialnego rozwiązania homoklinicznego dla autonomicznych układów Hamiltona drugiego rzędu z nadkwadratowym potencjałem. Orbitę homokliniczną otrzymaliśmy jako słabą granicę ciągu punktów prawie krytycznych, stosując zasadę minimaks do odpowiedniego funkcjonału akcji oraz prosty argument typu ''concentration-compactness''.