Almost homoclinic solutions for the second order Hamiltonian systems - Publication - Bridge of Knowledge

Search

Almost homoclinic solutions for the second order Hamiltonian systems

Abstract

W niniejszej pracy badam istnienie rozwiązań prawie homoklinicznych (almost homoclinic) dla układu Hamiltona rzędu drugiego (układu Newtona): ü(t) + V_{u}(t,u) = f(t), gdzie t є R, u є R^{n}, V(t,u) = -K(t,u) + W(t,u), K,W: R x R^{n} → R są klasy C^{1}, K spełnia warunek ''pinching'', W_{u}(t,u)=o(|u|), gdy |u| → 0 jednostajnie względem t, f: R → R^{n} jest funkcją ciągłą, niezerową i odpowiednio małą w L^{2}(R,R^{n}). Przy tych założeniach u=0 nie jest rozwiązaniem, dlatego też układ nie ma klasycznych rozwiązań homoklinicznych do zera. Mimo to, wciąż możemy pytać o istnienie rozwiązań, które w plus i minus nieskonczoność dążą do zera. Nazwałam je prawie homoklinicznymi do zera. Stosując zasadę Ekelanda pokazałam, że przy powyższych założeniach układ Newtona ma rozwiązanie prawie homokliniczne.

Cite as

Full text

full text is not available in portal

Keywords

Details

Category:
Articles
Type:
artykuł w czasopiśmie wyróżnionym w JCR
Published in:
Topological Methods in Nonlinear Analysis no. 32, pages 131 - 137,
ISSN: 1230-3429
Language:
English
Publication year:
2008
Bibliographic description:
Janczewska J.: Almost homoclinic solutions for the second order Hamiltonian systems// Topological Methods in Nonlinear Analysis. -Vol. 32, nr. 1 (2008), s.131-137
Verified by:
Gdańsk University of Technology

seen 109 times

Recommended for you

Meta Tags