Abstract
W niniejszej pracy badam istnienie rozwiązań prawie homoklinicznych (almost homoclinic) dla układu Hamiltona rzędu drugiego (układu Newtona): ü(t) + V_{u}(t,u) = f(t), gdzie t є R, u є R^{n}, V(t,u) = -K(t,u) + W(t,u), K,W: R x R^{n} → R są klasy C^{1}, K spełnia warunek ''pinching'', W_{u}(t,u)=o(|u|), gdy |u| → 0 jednostajnie względem t, f: R → R^{n} jest funkcją ciągłą, niezerową i odpowiednio małą w L^{2}(R,R^{n}). Przy tych założeniach u=0 nie jest rozwiązaniem, dlatego też układ nie ma klasycznych rozwiązań homoklinicznych do zera. Mimo to, wciąż możemy pytać o istnienie rozwiązań, które w plus i minus nieskonczoność dążą do zera. Nazwałam je prawie homoklinicznymi do zera. Stosując zasadę Ekelanda pokazałam, że przy powyższych założeniach układ Newtona ma rozwiązanie prawie homokliniczne.
Author (1)
Cite as
Full text
full text is not available in portal
Keywords
Details
- Category:
- Articles
- Type:
- artykuł w czasopiśmie wyróżnionym w JCR
- Published in:
-
Topological Methods in Nonlinear Analysis
no. 32,
pages 131 - 137,
ISSN: 1230-3429 - Language:
- English
- Publication year:
- 2008
- Bibliographic description:
- Janczewska J.: Almost homoclinic solutions for the second order Hamiltonian systems// Topological Methods in Nonlinear Analysis. -Vol. 32, nr. 1 (2008), s.131-137
- Verified by:
- Gdańsk University of Technology
seen 109 times