Filters
total: 458
Search results for: antenna modeling
-
Exploring the Beam Squint Effects on Reflectarray Perfromance: A Comprehensive Analysis of the Specular and Scattered Reflection of the Unit Cell
PublicationIn this article, the phenomena of beam deviation in reflectarray is discussed. The radiation pattern of the unit cell, which plays a vital role in shaping the beam of the reflectarray, is analyzed by considering undesired specular and scattered reflections. These unwanted reflections adversely affect the pattern of the single unit cell, thereby reducing the overall performance of the reflectarray. To conduct our investigations,...
-
Overview of planar antenna loading metamaterials for gain performance enhancement: the two decades of progress
PublicationMetamaterials (MTMs) are artificially engineered materials with unique electromagnetic properties not occurring in natural materials. MTMs have gained considerable attention owing to their exotic electromagnetic characteristics such as negative permittivity and permeability, thereby a negative refraction index. These extraordinary properties enable many practical applications such as super-lenses, and cloaking technology, and are...
-
A Compact Circularly Polarized Dielectric Resonator Antenna with MIMO Characterizations for UWB Applications
PublicationUltra-wideband (UWB) technology is extensively used in indoor navigation, medical applications, and Internet of Things (IoT) devices due to its low power consumption and resilience against multipath fading and losses. This paper examines a multiple input multiple-output (MIMO), circularly polarized (CP) dielectric resonator antenna (DRA) for UWB systems. Compact form factor, high gain, wideband response, improved port isolation,...
-
Optimization-Based High-Frequency Circuit Miniaturization through Implicit and Explicit Constraint Handling: Recent Advances
PublicationMiniaturization trends in high-frequency electronics have led to accommodation challenges in the integration of the corresponding components. Size reduction thereof has become a practical necessity. At the same time, the increasing performance demands imposed on electronic systems remain in conflict with component miniaturization. On the practical side, the challenges related to handling design constraints are aggravated by the...
-
On Improved-Reliability Design Optimization of High-Frequency Structures Using Local Search Algorithms
PublicationThe role of numerical optimization has been continuously growing in the design of high-frequency structures, including microwave and antenna components. At the same time, accurate evaluation of electrical characteristics necessitates full-wave electromagnetic (EM) analysis, which is CPU intensive, especially for complex systems. As rigorous optimization routines involve repetitive EM simulations, the associated cost may be significant....
-
Spatio-temporal filtering for determination of common mode error in regional GNSS networks
PublicationThe spatial correlation between different stations for individual components in the regional GNSS networks seems to be significant. The mismodelling in satellite orbits, the Earth orientation parameters (EOP), largescale atmospheric effects or satellite antenna phase centre corrections can all cause the regionally correlated errors. This kind of GPS time series errors are referred to as common mode errors (CMEs). They are usually...
-
RSS-Based DoA Estimation Using ESPAR Antenna for V2X Applications in 802.11p Frequency Band
PublicationIn this paper, we have proposed direction-of arrival (DoA) estimation of incoming signals for V2X applications in 802. 11p frequency band, based on recording of received signal strength (RSS) at electronically steerable parasitic array radiator (ESPAR) antenna's output port. The motivation of the work was to prove that ESPAR antenna used to increase connectivity and security in V2X communication can...
-
Photosensitization of TiO2 and SnO2 by Artificial Self-Assembling Mimics of the Natural Chlorosomal Bacteriochlorophylls
PublicationOf all known photosynthetic organisms, the green sulfur bacteria are able to survive under the lowest illumination conditions due to highly efficient photon management and exciton transport enabled by their special organelles, the chlorosomes, which consist mainly of self-assembled bacteriochlorophyll c, d, or e molecules. A challenging task is to mimic the principle of self-assembling chromophores in artificial light-harvesting...