Filters
total: 127
Search results for: FRICTION NODE
-
CrN coating in ring-on-ring sliding with distlled water lubrication 5MPa, 0.1m/s specimn. #B22/#A23
Open Research DataWear tests in sliding friction of CrN coating on 1.4021 (EN 10088-1) heat treated stainless steel. Ring - on - ring contact in unidirectional sliding, CrN over CrN. Mean contact stress: 5MPa. Sliding velocity: 0,1 m/s. Mean friction radius: 9.5mm. Lubricant: DISTILLED WATER. Tribometer: PT-3. Overall test time till coating penetration 6 min. The test...
-
SiC coating in ring-on-ring sliding with distlled water lubrication 5MPa, 0.1m/s specimn. #A33/#B34
Open Research DataWear tests in sliding friction of SiC coating on 1.4021 (EN 10088-1) heat treated stainless steel. Ring - on - ring contact in unidirectional sliding, SiC over SiC. Mean contact stress: 5MPa. Sliding velocity: 0,1 m/s. Mean friction radius: 9.5mm. Lubricant: DISTILLED WATER. Tribometer: PT-3. Overall test time till coating penetration 3 min. The test...
-
VIbration monitoring in reciprocating siding friction tests. Ball-on-flat contact. Sintered alumina ceramics (98%). Lubricant - PARAFFIN OIL. Specim. set K09A - full-run
Open Research DataVIbration monitoring in reciprocating siding friction tests in ball-on-flat contact. Both specimens made of sintered alumina ceramics (98%) - self-mated contact.Linear reciprocating motion.Lubrication: PARAFFIN OIL. Sliding velocity (peak): 0.1 m/s. Load (normal force): 5N. Test rig: TPZ-1 Tribometer.Running time: progressive increments of 10, 15, 30,...
-
VIbration monitoring in reciprocating siding friction tests. Ball-on-flat contact. Sintered alumina ceramics (98%). Lubricant - PARAFFIN OIL. Specim. set K09 - pre-run
Open Research DataVIbration monitoring in reciprocating siding friction tests in ball-on-flat contact. Both specimens made of sintered alumina ceramics (98%) - self-mated contact.Linear reciprocating motion.Lubrication: PARAFFIN OIL. Sliding velocity (peak): 0.1 m/s. Load (normal force): 5N. Test rig: TPZ-1 Tribometer.Running time: progressive increments of 10, 15, 30,...
-
CrN coating in ring-on-ring sliding with saline solution (0.9%) lubrication 5MPa, 0.1m/s specimn. #B21/#A21
Open Research DataWear tests in sliding friction of CrN coating on 1.4021 (EN 10088-1) heat treated stainless steel. Ring - on - ring contact in unidirectional sliding, CrN over CrN . Mean contact stress: 5MPa. Sliding velocity: 0,1 m/s. Mean friction radius: 9.5mm. Lubricant: SALINE SOLUTION (0.9%). Tribometer: PT-3. Overall test time till coating penetration 25 min....
-
TiN coating in ring-on-ring sliding with distlled water lubrication 5MPa, 0.1m/s specimn. #A45/#A47
Open Research DataWear tests in sliding friction of TiN coating on 1.4021 (EN 10088-1) heat treated stainless steel. Ring - on - ring contact in unidirectional sliding, TiN over TiN. Mean contact stress: 5MPa. Sliding velocity: 0,1 m/s. Mean friction radius: 9.5mm. Lubricant: DISTILLED WATER. Tribometer: PT-3. Overall test time till coating penetration 20 min. The test...
-
TiN coating in ring-on-ring sliding with distlled water lubrication 5MPa, 0.1m/s specimn. #A45/#B45
Open Research DataWear tests in sliding friction of TiN coating on 1.4021 (EN 10088-1) heat treated stainless steel. Ring - on - ring contact in unidirectional sliding, TiN over TiN. Mean contact stress: 5MPa. Sliding velocity: 0,1 m/s. Mean friction radius: 9.5mm. Lubricant: DISTILLED WATER. Tribometer: PT-3. Overall test time till coating penetration 90 min. The test...
-
DLC coating in ring-on-ring sliding with water lubrication 10MPa/0.1m/s
Open Research DataWear tests in sliding friction of DLC coating on 1.4021 (EN 10088-1) heat treated stainless steel. Ring - on - ring contact in unidirectional sliding, DLC-W over DLC-W. Mean contact stress: 10MPa. Sliding velocity: 0,1 m/s. Mean friction radius: 9.5mm. Lubricant: WATER. Tribometer: PT-3. Overall test time >15h. The test was augmented by vibration...
-
DLC coating in ring-on-ring sliding with saline solution (0.9% wt.) lubrication 20MPa/0.1m/s
Open Research DataWear tests in sliding friction of DLC coating on 1.4021 (EN 10088-1) heat treated stainless steel. Ring - on - ring contact in unidirectional sliding, DLC-W over DLC-W. Mean contact stress: 20MPa. Sliding velocity: 0,1 m/s. Mean friction radius: 9.5mm. Lubricant: SALINE SOLUTION (0.9% wt.). Tribometer: PT-3. Overall test time >15h. The test was augmented...
-
DLC coating in ring-on-ring sliding with saline solution (0.9% wt.) lubrication 10MPa/0.1m/s
Open Research DataWear tests in sliding friction of DLC coating on 1.4021 (EN 10088-1) heat treated stainless steel. Ring - on - ring contact in unidirectional sliding, DLC-W over DLC-W. Mean contact stress: 10MPa. Sliding velocity: 0,1 m/s. Mean friction radius: 9.5mm. Lubricant: SALINE SOLUTION (0.9% wt.). Tribometer: PT-3. Overall test time >15h. The test was augmented...
-
DLC coating in ring-on-ring sliding with water lubrication 20MPa/0.1m/s
Open Research DataWear tests in sliding friction of DLC coating on 1.4021 (EN 10088-1) heat treated stainless steel. Ring - on - ring contact in unidirectional sliding, DLC-W over DLC-W. Mean contact stress: 20MPa. Sliding velocity: 0,1 m/s. Mean friction radius: 9.5mm. Lubricant: WATER. Tribometer: PT-3. Overall test time >15h. The test was augmented by vibration...
-
DLC coating doped with W in ring-on-ring sliding with water lubrication 20MPa/0.1m/s
Open Research DataWear tests in sliding friction of 1% W (tungsten) doped DLC coating on 1.4021 (EN 10088-1) heat treated stainless steel. Ring - on - ring contact in unidirectional sliding, DLC-W over DLC-W. Mean contact stress: 20MPa. Sliding velocity: 0,1 m/s. Mean friction radius: 9.5mm. Lubricant: WATER. Tribometer: PT-3. Overall test time >15h. The test was...
-
DLC coating doped with W in ring-on-ring sliding with water lubrication 10MPa/0.1m/s
Open Research DataWear tests in sliding friction of 1% W (tungsten) doped DLC coating on 1.4021 (EN 10088-1) heat treated stainless steel. Ring - on - ring contact in unidirectional sliding, DLC-W over DLC-W. Mean contact stress: 10MPa. Sliding velocity: 0,1 m/s. Mean friction radius: 9.5mm. Lubricant: WATER. Tribometer: PT-3. Overall test time >15h. The test was...
-
3D printed ABS thermoplastic vs. steel. Dry sliding wear test in constant load & velocity ring on flat configuration. Test parameters: print layer thickness and orientation. Test symbol: 009_v_2
Open Research DataData gathered in sliding ring-on-block (flat contact) tribological experiment. Materials: alloy steel (heat treated) vs. ABS plastic.
-
3D printed ABS thermoplastic vs. steel. Dry sliding wear test in constant load & velocity ring on flat configuration. Test parameters: print layer thickness and orientation. Test symbol: 009_v_3
Open Research DataData gathered in sliding ring-on-block (flat contact) tribological experiment. Materials: alloy steel (heat treated) vs. ABS plastic.
-
3D printed ABS thermoplastic vs. steel. Dry sliding wear test in constant load & velocity ring on flat configuration. Test parameters: print layer thickness and orientation. Test symbol: 009_h_3
Open Research DataData gathered in sliding ring-on-block (flat contact) tribological experiment. Materials: alloy steel (heat treated) vs. ABS plastic.
-
3D printed ABS thermoplastic vs. steel. Dry sliding wear test in constant load & velocity ring on flat configuration. Test parameters: print layer thickness and orientation. Test symbol: 019_v_5
Open Research DataData gathered in sliding ring-on-block (flat contact) tribological experiment. Materials: alloy steel (heat treated) vs. ABS plastic.
-
3D printed ABS thermoplastic vs. steel. Dry sliding wear test in constant load & velocity ring on flat configuration. Test parameters: print layer thickness and orientation. Test symbol: 009_h_5
Open Research DataData gathered in sliding ring-on-block (flat contact) tribological experiment. Materials: alloy steel (heat treated) vs. ABS plastic.
-
3D printed ABS thermoplastic vs. steel. Dry sliding wear test in constant load & velocity ring on flat configuration. Test parameters: print layer thickness and orientation. Test symbol: 009_h_4
Open Research DataData gathered in sliding ring-on-block (flat contact) tribological experiment. Materials: alloy steel (heat treated) vs. ABS plastic.
-
3D printed ABS thermoplastic vs. steel. Dry sliding wear test in constant load & velocity ring on flat configuration. Test parameters: print layer thickness and orientation. Test symbol: 039_h_4
Open Research DataData gathered in sliding ring-on-block (flat contact) tribological experiment. Materials: alloy steel (heat treated) vs. ABS plastic.
-
3D printed ABS thermoplastic vs. steel. Dry sliding wear test in constant load & velocity ring on flat configuration. Test parameters: print layer thickness and orientation. Test symbol: 019_v_4
Open Research DataData gathered in sliding ring-on-block (flat contact) tribological experiment. Materials: alloy steel (heat treated) vs. ABS plastic.
-
3D printed ABS thermoplastic vs. steel. Dry sliding wear test in constant load & velocity ring on flat configuration. Test parameters: print layer thickness and orientation. Test symbol: 019_h_5
Open Research DataData gathered in sliding ring-on-block (flat contact) tribological experiment. Materials: alloy steel (heat treated) vs. ABS plastic.
-
3D printed ABS thermoplastic vs. steel. Dry sliding wear test in constant load & velocity ring on flat configuration. Test parameters: print layer thickness and orientation. Test symbol: 039_v_4
Open Research DataData gathered in sliding ring-on-block (flat contact) tribological experiment. Materials: alloy steel (heat treated) vs. ABS plastic.
-
3D printed ABS thermoplastic vs. steel. Dry sliding wear test in constant load & velocity ring on flat configuration. Test parameters: print layer thickness and orientation. Test symbol: 009_v_4
Open Research DataData gathered in sliding ring-on-block (flat contact) tribological experiment. Materials: alloy steel (heat treated) vs. ABS plastic.
-
3D printed ABS thermoplastic vs. steel. Dry sliding wear test in constant load & velocity ring on flat configuration. Test parameters: print layer thickness and orientation. Test symbol: 039_v_3
Open Research DataData gathered in sliding ring-on-block (flat contact) tribological experiment. Materials: alloy steel (heat treated) vs. ABS plastic.
-
3D printed ABS thermoplastic vs. steel. Dry sliding wear test in constant load & velocity ring on flat configuration. Test parameters: print layer thickness and orientation. Test symbol: 019_v_3
Open Research DataData gathered in sliding ring-on-block (flat contact) tribological experiment. Materials: alloy steel (heat treated) vs. ABS plastic.
-
3D printed ABS thermoplastic vs. steel. Dry sliding wear test in constant load & velocity ring on flat configuration. Test parameters: print layer thickness and orientation. Test symbol: 019_h_3
Open Research DataData gathered in sliding ring-on-block (flat contact) tribological experiment. Materials: alloy steel (heat treated) vs. ABS plastic.
-
3D printed ABS thermoplastic vs. steel. Dry sliding wear test in constant load & velocity ring on flat configuration. Test parameters: print layer thickness and orientation. Test symbol: 039_h_5
Open Research DataData gathered in sliding ring-on-block (flat contact) tribological experiment. Materials: alloy steel (heat treated) vs. ABS plastic.
-
3D printed ABS thermoplastic vs. steel. Dry sliding wear test in constant load & velocity ring on flat configuration. Test parameters: print layer thickness and orientation. Test symbol: 019_h_4
Open Research DataData gathered in sliding ring-on-block (flat contact) tribological experiment. Materials: alloy steel (heat treated) vs. ABS plastic.
-
3D printed ABS thermoplastic vs. steel. Dry sliding wear test in constant load & velocity ring on flat configuration. Test parameters: print layer thickness and orientation. Test symbol: 039_v_2
Open Research DataData gathered in sliding ring-on-block (flat contact) tribological experiment. Materials: alloy steel (heat treated) vs. ABS plastic.
-
3D printed ABS thermoplastic vs. steel. Dry sliding wear test in constant load & velocity ring on flat configuration. Test parameters: print layer thickness and orientation. Test symbol: 039_h_3
Open Research DataData gathered in sliding ring-on-block (flat contact) tribological experiment. Materials: alloy steel (heat treated) vs. ABS plastic.
-
DLC coating doped with W in ring-on-ring sliding with saline solution (0.9% wt.) lubrication 20MPa/0.1m/s
Open Research DataWear tests in sliding friction of 1% W (tungsten) doped DLC coating on 1.4021 (EN 10088-1) heat treated stainless steel. Ring - on - ring contact in unidirectional sliding, DLC-W over DLC-W. Mean contact stress: 20MPa. Sliding velocity: 0,1 m/s. Mean friction radius: 9.5mm. Lubricant: SALINE SOLUTION (0.9% wt.). Tribometer: PT-3. Overall test time >15h....
-
DLC coating doped with W in ring-on-ring sliding with saline solution (0.9% wt.) lubrication 10MPa/0.1m/s
Open Research DataWear tests in sliding friction of 1% W (tungsten) doped DLC coating on 1.4021 (EN 10088-1) heat treated stainless steel. Ring - on - ring contact in unidirectional sliding, DLC-W over DLC-W. Mean contact stress: 10MPa. Sliding velocity: 0,1 m/s. Mean friction radius: 9.5mm. Lubricant: SALINE SOLUTION (0.9% wt.). Tribometer: PT-3. Overall test time >15h....
-
Optical microsc. images of wear marks on ball (JPG). Reciprocating siding friction tests. Ball-on-flat contact. Sintered alumina ceramics (98%). No lubrication (DRY). Specim. set K04
Open Research DataOptical microscope images of wear zone on the 5mm diam. ceramic ball used in tests as the fixed specimen.Friction and wear tests in ball-on-flat contact. Both specimens made of sintered alumina ceramics (98%) - self-mated contact.Linear reciprocating motion.Lubrication: DRY. Sliding velocity (peak): 0.1 m/s. Load (normal force): 5N. Test rig: TPZ-1...
-
Optical microsc. images of wear marks on ball (JPG). Reciprocating siding friction tests. Ball-on-flat contact. Sintered alumina ceramics (98%). No lubrication (DRY). Specim. set K05
Open Research DataOptical microscope images of wear zone on the 5mm diam. ceramic ball used in tests as the fixed specimen.Friction and wear tests in ball-on-flat contact. Both specimens made of sintered alumina ceramics (98%) - self-mated contact.Linear reciprocating motion.Lubrication: DRY. Sliding velocity (peak): 0.1 m/s. Load (normal force): 5N. Test rig: TPZ-1...
-
Optical microsc. images of wear marks on ball (JPG). Reciprocating siding friction tests. Ball-on-flat contact. Sintered alumina ceramics (98%). No lubrication (DRY). Specim. set K03
Open Research DataOptical microscope images of wear zone on the 5mm diam. ceramic ball used in tests as the fixed specimen.Friction and wear tests in ball-on-flat contact. Both specimens made of sintered alumina ceramics (98%) - self-mated contact.Linear reciprocating motion.Lubrication: DRY. Sliding velocity (peak): 0.1 m/s. Load (normal force): 5N. Test rig: TPZ-1...
-
Optical microsc. images of wear marks on ball (JPG). Reciprocating siding friction tests. Ball-on-flat contact. Sintered alumina ceramics (98%). No lubrication (DRY). Specim. set K01
Open Research DataOptical microscope images of wear zone on the 5mm diam. ceramic ball used in tests as the fixed specimen.Friction and wear tests in ball-on-flat contact. Both specimens made of sintered alumina ceramics (98%) - self-mated contact.Linear reciprocating motion.Lubrication: DRY. Sliding velocity (peak): 0.1 m/s. Load (normal force): 5N. Test rig: TPZ-1...
-
Wear in siding friction tests. Ring-on-ring contact. Sintered alumina ceramics (98%). Paraffin oil lubrication. Specim. sets #20-#21, #22-#23, #24-#25, #26-#27, #28-#29,#30 - #31. Run time: 4-8h.
Open Research DataWear in sliding friction tests in ring-on-ring contact. Sintered alumina ceramics (98%) in self-mated contact. Lubrication: paraffin oil. Sliding velocity: 0.2 m/s. Mean contact stress: 10 MPa. Test rig: PT-3 Tribometer.Running time: 4-8h.Specimen sets:Specim. sets (# [upper, rotating] - #[lower, non-rotating]):#20-#21, #22-#23, #24-#25, #26-#27,...
-
Wear in siding friction tests. Ring-on-ring contact. Sintered alumina ceramics (98%). Paraffin oil lubrication. Specim. sets #20-#21, #22-#23, #24-#25, #26-#27, #28-#29,#30 - #31. Run time: 0-4h.
Open Research DataWear in sliding friction tests in ring-on-ring contact. Sintered alumina ceramics (98%) in self-mated contact. Lubrication: paraffin oil. Sliding velocity: 0.2 m/s. Mean contact stress: 10 MPa. Test rig: PT-3 Tribometer.Running time: 0 - 4h.Specimen sets:Specim. sets (# [upper, rotating] - #[lower, non-rotating]):#20-#21, #22-#23, #24-#25, #26-#27,...
-
Optical microsc. images of wear marks on ball (JPG). Reciprocating siding friction tests. Ball-on-flat contact. Sintered alumina ceramics (98%). Lubricant - DISTILLED WATER. Specim. set K07
Open Research DataOptical microscope images of wear zone on the 5mm diam. ceramic ball used in tests as the fixed specimen.Friction and wear tests in ball-on-flat contact. Both specimens made of sintered alumina ceramics (98%) - self-mated contact.Linear reciprocating motion.Lubrication: DISTILLED WATER. Sliding velocity (peak): 0.1 m/s. Load (normal force): 5N. Test...
-
Optical microsc. images of wear marks on ball (JPG). Reciprocating siding friction tests. Ball-on-flat contact. Sintered alumina ceramics (98%). Lubricant - DISTILLED WATER. Specim. set K06
Open Research DataOptical microscope images of wear zone on the 5mm diam. ceramic ball used in tests as the fixed specimen.Friction and wear tests in ball-on-flat contact. Both specimens made of sintered alumina ceramics (98%) - self-mated contact.Linear reciprocating motion.Lubrication: DISTILLED WATER. Sliding velocity (peak): 0.1 m/s. Load (normal force): 5N. Test...
-
Optical microsc. images of wear marks on ball (JPG). Reciprocating siding friction tests. Ball-on-flat contact. Sintered alumina ceramics (98%). Lubricant - PARAFFIN OIL. Specim. set K08
Open Research DataOptical microscope images of wear zone on the 5mm diam. ceramic ball used in tests as the fixed specimen.Friction and wear tests in ball-on-flat contact. Both specimens made of sintered alumina ceramics (98%) - self-mated contact.Linear reciprocating motion.Lubrication: PARAFFIN OIL. Sliding velocity (peak): 0.1 m/s. Load (normal force): 5N. Test rig:...
-
Optical microsc. images of wear marks on ball (JPG). Reciprocating siding friction tests. Ball-on-flat contact. Sintered alumina ceramics (98%). Lubricant - DISTILLED WATER. Specim. set K02
Open Research DataOptical microscope images of wear zone on the 5mm diam. ceramic ball used in tests as the fixed specimen.Friction and wear tests in ball-on-flat contact. Both specimens made of sintered alumina ceramics (98%) - self-mated contact.Linear reciprocating motion.Lubrication: DISTILLED WATER. Sliding velocity (peak): 0.1 m/s. Load (normal force): 5N. Test...
-
Optical microsc. images of wear marks on ball (JPG). Reciprocating siding friction tests. Ball-on-flat contact. Sintered alumina ceramics (98%). Lubricant - PARAFFIN OIL. Specim. set K09
Open Research DataOptical microscope images of wear zone on the 5mm diam. ceramic ball used in tests as the fixed specimen.Friction and wear tests in ball-on-flat contact. Both specimens made of sintered alumina ceramics (98%) - self-mated contact.Linear reciprocating motion.Lubrication: PARAFFIN OIL. Sliding velocity (peak): 0.1 m/s. Load (normal force): 5N. Test rig:...
-
Optical microsc. images of wear marks on ball (JPG). Reciprocating siding friction tests. Ball-on-flat contact. Sintered alumina ceramics (98%). Lubricant - DISTILLED WATER. Specim. set K06
Open Research DataOptical microscope images of wear zone on the 5mm diam. ceramic ball used in tests as the fixed specimen.Friction and wear tests in ball-on-flat contact. Both specimens made of sintered alumina ceramics (98%) - self-mated contact.Linear reciprocating motion.Lubrication: DISTILLED WATER. Sliding velocity (peak): 0.1 m/s. Load (normal force): 5N. Test...
-
Wear in siding friction tests. Ring-on-ring contact. Sintered alumina ceramics (98%). Paraffin oil lubrication. Specim. sets #20-#21, #22-#23, #24-#25, #26-#27, #28-#29,#30 - #31. Run time: 0-4h. High frequency burst recording.
Open Research DataWear in sliding friction tests in ring-on-ring contact. Sintered alumina ceramics (98%) in self-mated contact. Lubrication: paraffin oil. Sliding velocity: 0.2 m/s. Mean contact stress: 10 MPa. Test rig: PT-3 Tribometer. High frequency burst recording.Running time: 0 - 4h.Specimen sets:Specim. sets (# [upper, rotating] - #[lower, non-rotating]):#20-#21,...
-
Dynamics of a linear pneumatic actuator with 63 mm piston diameter and 500 mm stroke subjected only to a mass load of 1640 g
Open Research DataThe aim of the study was to determine the dynamics of a linear pneumatic cylinder subjected only to mass load. An actuator of one of the well known European manufacturers was tested.The experiment were to measure pressure changes in both chambers of the actuator and the position of the piston during stroke and retracting. The test was repeated 11 times....
-
Dynamics of a linear pneumatic actuator with 63 mm piston diameter and 150 mm stroke subjected only to a mass load of 750 g
Open Research DataThe aim of the study was to determine the dynamics of a linear pneumatic cylinder subjected only to mass load. An actuator of one of the well known European manufacturers was tested.The experiment were to measure pressure changes in both chambers of the actuator and the position of the piston during stroke and retracting. The test was repeated 11 times....
-
Dynamics of a linear pneumatic actuator with 80 mm piston diameter and 150 mm stroke subjected only to a mass load of 1100 g
Open Research Data -
Dynamics of a linear pneumatic actuator with 50 mm piston diameter and 150 mm stroke subjected only to a mass load of 1530 g
Open Research DataThe aim of the study was to determine the dynamics of a linear pneumatic cylinder subjected only to mass load. An actuator of one of the well known European manufacturers was tested.The experiment were to measure pressure changes in both chambers of the actuator and the position of the piston during stroke and retracting. The test was repeated 11 times....