Filters
total: 272
Search results for: BEAM STEERING, BORESIGHT, ELECTROMAGNETIC (EM) LENS, FOCAL DISTANCE, METASURFACES
-
Tolerance Optimization of Antenna Structures by Means of Response Feature Surrogates
PublicationFabrication tolerances and other types of uncertainties, e.g., the lack of precise knowledge of material parameters, have detrimental effects on electrical and field performance of antenna systems. In the case of input characteristics these are particularly noticeable for narrow- and multi-band antennas where deviations of geometry parameters from their nominal values lead to frequency shifts of the operating frequency bands. Improving...
-
Cost-Efficient Surrogate Modeling of High-Frequency Structures Using Nested Kriging with Automated Adjustment of Model Domain Lateral Dimensions
PublicationSurrogate models are becoming popular tools of choice in mitigating issues related to the excessive cost of electromagnetic (EM)-driven design of high-frequency structures. Among available techniques, approximation modeling is by far the most popular due to its versatility. In particular, the surrogates are exclusively based on the sampled simulation data with no need to involve engineering insight or problem-specific knowledge....
-
Improved Efficacy Behavioral Modeling of Microwave Circuits through Dimensionality Reduction and Fast Global Sensitivity Analysis
PublicationBehavioral models have garnered significant interest in the realm of high-frequency electronics. Their primary function is to substitute costly computational tools, notably electromagnetic (EM) analysis, for repetitive evaluations of the structure under consideration. These evaluations are often necessary for tasks like parameter tuning, statistical analysis, or multi-criterial design. However, constructing reliable surrogate models...
-
Cost-Efficient Bi-Layer Modeling of Antenna Input Characteristics Using Gradient Kriging Surrogates
PublicationOver the recent years, surrogate modeling has been playing an increasing role in the design of antenna structures. The main incentive is to mitigate the issues related to high cost of electromagnetic (EM)-based procedures. Among the various techniques, approximation surrogates are the most popular ones due to their flexibility and easy access. Notwithstanding, data-driven modeling of antenna characteristics is associated with serious...
-
Reduced-Cost Microwave Modeling Using Constrained Domains and Dimensionality Reduction
PublicationDevelopment of modern microwave devices largely exploits full-wave electromagnetic (EM) simulations. Yet, simulation-driven design may be problematic due to the incurred CPU expenses. Addressing the high-cost issues stimulated the development of surrogate modeling methods. Among them, data-driven techniques seem to be the most widespread owing to their flexibility and accessibility. Nonetheless, applicability of approximation-based...
-
Optimal Design of Transmitarray Antennas via Low-Cost Surrogate Modelling
PublicationOver the recent years, reflectarrays and transmitarrays have been drawing a considerable attention due to their attractive features, including a possibility of realizing high gain and pencil-like radiation patterns without the employment of complex feeding networks. Among the two, transmitarrays seem to be superior over reflectarrays in terms of achieving high radiation efficiency without the feed blockage. Notwithstanding, the...
-
Improved Modeling of Microwave Structures Using Performance-Driven Fully-Connected Regression Surrogate
PublicationFast replacement models (or surrogates) have been widely applied in the recent years to accelerate simulation-driven design procedures in microwave engineering. The fundamental reason is a considerable—and often prohibitive—CPU cost of massive full-wave electromagnetic (EM) analyses related to solving common tasks such as parametric optimization or uncertainty quantification. The most popular class of surrogates are data-driven...
-
Low-Cost and Highly-Accurate Behavioral Modeling of Antenna Structures by Means of Knowledge-Based Domain-Constrained Deep Learning Surrogates
PublicationThe awareness and practical benefits of behavioral modeling methods have been steadily growing in the antenna engineering community over the last decade or so. Undoubtedly, the most important advantage thereof is a possibility of a dramatic reduction of computational expenses associated with computer-aided design procedures, especially those relying on full-wave electromagnetic (EM) simulations. In particular, the employment of...
-
Expedited Acquisition of Database Designs for Reduced-Cost Performance-Driven Modeling and Rapid Dimension Scaling of Antenna Structures
PublicationFast replacement models have been playing an increasing role in high-frequency electronics, including the design of antenna structures. Their role is to improve computational efficiency of the procedures that normally entail large numbers of expensive full-wave electromagnetic (EM) simulations, e.g., parametric optimization or uncertainty quantification. Recently introduced performance-driven modeling methods, such as the nested...
-
Constrained multi-objective optimization of compact microwave circuits by design triangulation and pareto front interpolation
PublicationDevelopment of microwave components is an inherently multi-objective task. This is especially pertinent to the design closure stage, i.e., final adjustment of geometry and/or material parameters carried out to improve the electrical performance of the system. The design goals are often conflicting so that the improvement of one normally leads to a degradation of others. Compact microwave passives constitute a representative case:...
-
Rapid Yield Optimization of Miniaturized Microwave Passives by Response Features and Variable-Fidelity EM Simulations
PublicationThe operation of high-frequency devices, including microwave passive components, can be impaired by fabrication tolerances but also incomplete knowledge concerning operating conditions (temperature, input power levels) and material parameters (e.g., substrate permittivity). Although the accuracy of manufacturing processes is always limited, the effects of parameter deviations can be accounted for in advance at the design phase...
-
Rapid Antenna Optimization with Restricted Sensitivity Updates by Automated Dominant Direction Identification
PublicationMeticulous tuning of geometry parameters turns pivotal in improving performance of antenna systems. It is more and more often realized using formal optimization methods, which is demonstrably the most efficient way of handling multiple design variables, objectives, and constraints. Although in some cases a need for launching global search arises, a typical design scenario only requires local optimization, especially when a decent...
-
Accelerated Parameter Tuning of Antenna Structures by Means of Response Features and Principal Directions
PublicationPopularity of numerical optimization has been steadily on the rise in the design of modern antenna systems. Resorting to mathematically rigorous parameter tuning methods is a matter of practical necessity as interactive techniques (e.g., parameter sweeping) are no longer adequate when handling several performance figures over multi-dimensional parameter spaces. The most common design scenarios involve local tuning since decent...
-
Results after grinding C45 steel
Open Research DataThe database contains results from nanoindenter, scanning microscope and also X-ray diffractometer. To determine the residual stresses and the size of the crystallites in the ferrite grains in the grinded surface layer, the Williamson Hall analysis of the X-ray diffraction patterns was performed. XRD diffraction patterns were also used to perform a...
-
Modelling and analysis of medium frequency transformers for power converters
PublicationThe evolutions in power systems and electric vehicles, related to the economic opportunities and the environmental issues, bring the need of high power galvanically isolated DC-DC converter. The medium frequency transformer (MFT) is one of its key components, enabled by the increasing switching frequency of modern power semiconductors like silicon carbide transistors or diodes. The increased operating frequency offers small...
-
Estimation of Broadband Complex Permeability Using SIW Cavity-Based Multimodal Approach
PublicationIn this article, an attractive multimodal substrate integrated waveguide (SIW) based methodology is presented for the characterization of magnetic materials in the broadband microwave frequency. The proposed approach employs a modified feed under-coupled SIW cavity instead of conventional feed over-coupled multiple SIW cavities; it uses the modified closedform expression, developed from the first principle to consider the effect...
-
EM-Driven Size Reduction and Multi-Criterial Optimization of Broadband Circularly-Polarized Antennas Using Pareto Front Traversing and Design Extrapolation
PublicationMaintaining small size has become an important consideration in the design of contemporary antenna structures. In the case of broadband circularly polarized (CP) antennas, miniaturization is a challenging process due to the necessity of simultaneous handling of electrical and field properties (reflection, axial ratio, gain), as well as ensuring sufficient frequency range of operation, especially at the lower edge of the antenna...
-
Direct Constraint Control for EM-Based Miniaturization of Microwave Passives
PublicationHandling constraints imposed on physical dimensions of microwave circuits has become an important design consideration over the recent years. It is primarily fostered by the needs of emerging application areas such as 5G mobile communications, internet of things, or wearable/implantable devices. The size of conventional passive components is determined by the guided wavelength, and its reduction requires topological modifications,...
-
A Comprehensive Survey on Antennas On-Chip Based on Metamaterial, Metasurface, and Substrate Integrated Waveguide Principles for Millimeter-Waves and Terahertz Integrated Circuits and Systems
PublicationAntennas on-chip are a particular type of radiating elements valued for their small footprint. They are most commonly integrated in circuit boards to electromagnetically interface free space, which is necessary for wireless communications. Antennas on-chip radiate and receive electromagnetic (EM) energy as any conventional antennas, but what distinguishes them is their miniaturized size. This means they can be integrated inside...
-
Uncertainty Quantification of Additive Manufacturing Post-Fabrication Tuning of Resonator-Based Microwave Sensors
PublicationReconfigurability, especially in terms of the ability of adjusting the operating frequency, has become an important prerequisite in the design of modern microwave components and systems. It is also pertinent to microwave sensors developed for a variety of applications such as characterization of material properties of solids or liquids. This paper discusses uncertainty quantification of additive-manufacturing-based post-fabrication...
-
Low-cost multiband four-port phased array antenna for sub-6 GHz 5G applications with enhanced gain methodology in Radio-over-fiber systems using modulation instability
PublicationPhased array antenna (PAA) technology is essential for applications requiring high gain and wide bandwidth, such as sensors, medical, and 5G. Achieving such a design, however, is a challenging and intricate process that calls for precise calculations and a combination of findings to alter the phase and amplitude of each unit. Furthermore, coupling effects between these PAA structure elements can only be completed with the use of...
-
Improved-Efficacy EM-Based Antenna Miniaturization by Multi-Fidelity Simulations and Objective Function Adaptation
PublicationThe growing demands for integration of surface mount design (SMD) antennas into miniatur-ized electronic devices have been continuously imposing limitations on the structure dimen-sions. Examples include embedded antennas in applications such as on-board devices, picosatel-lites, 5G communications, or implantable and wearable devices. The demands for size reduction while ensuring a satisfactory level of the electrical and field...