Publications
Filters
total: 11
Catalog Publications
Year 2024
-
Periodic solutions of Lagrangian systems under small perturbations
PublicationIn this paper we prove the existence of mountain pass periodic solutions of a certain class of generalized Lagrangian systems under small perturbations. We show that the found periodic solutions converge to a periodic solution of the unperturbed system if the perturbation tends to 0. The proof requires to work in a rather unusual (mixed) Orlicz–Sobolev space setting, which bears several challenges.
-
Quasilinear elliptic problem in anisotropic Orlicz–Sobolev space on unbounded domain
PublicationWe study a quasilinear elliptic problem $-\text{div} (\nabla \Phi(\nabla u))+V(x)N'(u)=f(u)$ with anisotropic convex function $\Phi$ on the whole $\R^n$. To prove existence of a nontrivial weak solution we use the mountain pass theorem for a functional defined on anisotropic Orlicz-Sobolev space $\WLPhispace(\R^n)$. As the domain is unbounded we need to use Lions type lemma formulated for Young functions. Our assumptions broaden...
Year 2023
-
A Generalized Version of the Lions-Type Lemma
PublicationIn this short paper, I recall the history of dealing with the lack of compactness of a sequence in the case of an unbounded domain and prove the vanishing Lions-type result for a sequence of Lebesgue-measurable functions. This lemma generalizes some results for a class of Orlicz–Sobolev spaces. What matters here is the behavior of the integral, not the space
-
A note on simple bifurcation of equilibrium forms of an elastic rod on a deformable foundation
PublicationWe study bifurcation of equilibrium states of an elastic rod on a two-parameter Winkler foundation. In the article "Bifurcation of equilibrium forms of an elastic rod on a two-parameter Winkler foundation" [Nonlinear Anal., Real World Appl. 39 (2018) 451-463] the existence of simple bifurcation points was proved by the use of the Crandall-Rabinowitz theorem. In this paper we want to present an alternative proof of this fact based...
-
The Arnold conjecture in $ \mathbb C\mathbb P^n $ and the Conley index
Publicationn this paper we give an alternative, purely Conley index based proof of the Arnold conjecture in CP^n asserting that a Hamiltonian diffeomorphism of CP^n endowed with the Fubini-Study metric has at least (n+1) fixed points.
Year 2022
-
A convergence result for mountain pass periodic solutions of perturbed Hamiltonian systems
PublicationIn this work, we study second-order Hamiltonian systems under small perturbations. We assume that the main term of the system has a mountain pass structure, but do not suppose any condition on the perturbation. We prove the existence of a periodic solution. Moreover, we show that periodic solutions of perturbed systems converge to periodic solutions of the unperturbed systems if the perturbation tends to zero. The assumption on...
-
A NUMERICAL STUDY ON THE DYNAMICS OF DENGUE DISEASE MODEL WITH FRACTIONAL PIECEWISE DERIVATIVE
PublicationThe aim of this paper is to study the dynamics of Dengue disease model using a novel piecewise derivative approach in the sense of singular and non-singular kernels. The singular kernel operator is in the sense of Caputo, whereas the non-singular kernel operator is the Atangana–Baleanu Caputo operator. The existence and uniqueness of a solution with piecewise derivative are examined for the aforementioned problem. The suggested...
-
MEMORY EFFECT ANALYSIS USING PIECEWISE CUBIC B-SPLINE OF TIME FRACTIONAL DIFFUSION EQUATION
PublicationThe purpose of this work is to study the memory effect analysis of Caputo–Fabrizio time fractional diffusion equation by means of cubic B-spline functions. The Caputo–Fabrizio interpretation of fractional derivative involves a non-singular kernel that permits to describe some class of material heterogeneities and the effect of memory more effectively. The proposed numerical technique relies on finite difference approach and cubic...
Year 2021
-
Existence of Two Periodic Solutions to General Anisotropic Euler-Lagrange Equations
PublicationAbstract. This paper is concerned with the following Euler-Lagrange system d/dtLv(t,u(t), ̇u(t)) =Lx(t,u(t), ̇u(t)) for a.e.t∈[−T,T], u(−T) =u(T), Lv(−T,u(−T), ̇u(−T)) =Lv(T,u(T), ̇u(T)), where Lagrangian is given by L=F(t,x,v) +V(t,x) +〈f(t),x〉, growth conditions aredetermined by an anisotropic G-function and some geometric conditions at infinity.We consider two cases: with and without forcing termf. Using a general version...
-
Homoclinics for singular strong force Lagrangian systems in R^N
PublicationWe will be concerned with the existence of homoclinics for second order Hamiltonian systems in R^N (N>2) given by Hamiltonians of the form H(t,q,p)=Φ(p)+V(t,q), where Φ is a G-function in the sense of Trudinger, V is C^2-smooth, periodic in the time variable, has a single well of infinite depth at a point ξ and a unique strict global maximum 0 at the origin. Under a strong force type condition aroud the singular point ξ, we prove...
-
The equivariant spectral flow and bifurcation of periodic solutions of Hamiltonian systems
PublicationWe define a spectral flow for paths of selfadjoint Fredholm operators that are equivariant under the orthogonal action of a compact Lie group as an element of the representation ring of the latter. This G-equivariant spectral flow shares all common properties of the integer valued classical spectral flow, and it can be non-trivial even if the classical spectral flow vanishes. Our main theorem uses the G-equivariant spectral flow...