ISSN:
eISSN:
Dyscypliny:
- architektura i urbanistyka (Dziedzina nauk inżynieryjno-technicznych)
- automatyka, elektronika, elektrotechnika i technologie kosmiczne (Dziedzina nauk inżynieryjno-technicznych)
- informatyka techniczna i telekomunikacja (Dziedzina nauk inżynieryjno-technicznych)
- inżynieria biomedyczna (Dziedzina nauk inżynieryjno-technicznych)
- inżynieria lądowa, geodezja i transport (Dziedzina nauk inżynieryjno-technicznych)
- inżynieria materiałowa (Dziedzina nauk inżynieryjno-technicznych)
- inżynieria mechaniczna (Dziedzina nauk inżynieryjno-technicznych)
- astronomia (Dziedzina nauk ścisłych i przyrodniczych)
- informatyka (Dziedzina nauk ścisłych i przyrodniczych)
- nauki fizyczne (Dziedzina nauk ścisłych i przyrodniczych)
Punkty Ministerialne: Pomoc
Rok | Punkty | Lista |
---|---|---|
Rok 2025 | 200 | Ministerialna lista czasopism punktowanych 2024 |
Rok | Punkty | Lista |
---|---|---|
2025 | 200 | Ministerialna lista czasopism punktowanych 2024 |
2024 | 200 | Ministerialna lista czasopism punktowanych 2024 |
2023 | 200 | Lista ministerialna czasopism punktowanych 2023 |
2022 | 200 | Lista ministerialna czasopism punktowanych (2019-2022) |
2021 | 200 | Lista ministerialna czasopism punktowanych (2019-2022) |
2020 | 200 | Lista ministerialna czasopism punktowanych (2019-2022) |
2019 | 200 | Lista ministerialna czasopism punktowanych (2019-2022) |
2018 | 45 | A |
2017 | 45 | A |
2016 | 45 | A |
2015 | 45 | A |
2014 | 45 | A |
2013 | 45 | A |
2012 | 40 | A |
2011 | 40 | A |
2010 | 32 | A |
Model czasopisma:
Punkty CiteScore:
Rok | Punkty |
---|---|
Rok 2023 | 12.7 |
Rok | Punkty |
---|---|
2023 | 12.7 |
2022 | 11.6 |
2021 | 10.3 |
2020 | 9.9 |
2019 | 8.9 |
2018 | 8.6 |
2017 | 7.3 |
2016 | 6.4 |
2015 | 5.8 |
2014 | 5.5 |
2013 | 5.8 |
2012 | 5.1 |
2011 | 5 |
Impact Factor:
Sherpa Romeo:
Prace opublikowane w tym czasopiśmie
Filtry
wszystkich: 10
Katalog Czasopism
Rok 2024
-
A novel section–section potential for short-range interactions between plane beams
PublikacjaWe derive a novel formulation for the interaction potential between deformable fibers due to short-range fields arising from intermolecular forces. The formulation improves the existing section–section interaction potential law for in-plane beams by considering an offset between interacting cross sections. The new law is asymptotically consistent, which is particularly beneficial for computationally demanding scenarios involving...
-
A simple and efficient hybrid discretization approach to alleviate membrane locking in isogeometric thin shells
PublikacjaThis work presents a new hybrid discretization approach to alleviate membrane locking in isogeometric finite element formulations for Kirchhoff–Love shells. The approach is simple, and requires no additional dofs and no static condensation. It does not increase the bandwidth of the tangent matrix and is effective for both linear and nonlinear problems. It combines isogeometric surface discretizations with classical Lagrange-based...
-
Active Kriging-based conjugate first-order reliability method for highly efficient structural reliability analysis using resample strategy
PublikacjaEfficient structural reliability analysis method is crucial to solving reliability analysis of complex structural problems. High-computational cost and low-failure probability problems greatly limit the efficiency in structural reliability analysis problems, causing the safety and reliability of the structure to be questioned. In this work, a highly efficient structural reliability analysis method coupling active Kriging algorithm...
Rok 2023
-
A selectively reduced degree basis for efficient mixed nonlinear isogeometric beam formulations with extensible directors
PublikacjaThe effect of higher order continuity in the solution field by using NURBS basis function in isogeometric analysis (IGA) is investigated for an efficient mixed finite element formulation for elastostatic beams. It is based on the Hu–Washizu variational principle considering geometrical and material nonlinearities. Here we present a reduced degree of basis functions for the additional fields of the stress resultants and strains...
Rok 2022
-
Efficient and robust quadratures for isogeometric analysis: Reduced Gauss and Gauss–Greville rules
PublikacjaThis work proposes two efficient quadrature rules, reduced Gauss quadrature and Gauss–Greville quadrature, for isogeometric analysis. The rules are constructed to exactly integrate one-dimensional B-spline basis functions of degree p, and continuity class C^{p−k}, where k is the highest order of derivatives appearing in the Galerkin formulation of the problem under consideration. This is the same idea we utilized in Zou et al....
-
Nonlinear material identification of heterogeneous isogeometric Kirchhoff–Love shells
PublikacjaThis work presents a Finite Element Model Updating inverse methodology for reconstructing heterogeneous materialdistributions based on an efficient isogeometric shell formulation. It uses nonlinear hyperelastic material models suitable fordescribing incompressible material behavior as well as initially curved shells. The material distribution is discretized by bilinearelements such that the nodal values...
Rok 2021
-
An isogeometric finite element formulation for geometrically exact Timoshenko beams with extensible directors
PublikacjaAn isogeometric finite element formulation for geometrically and materially nonlinear Timoshenko beams is presented, which incorporates in-plane deformation of the cross-section described by two extensible director vectors. Since those directors belong to the space R3, a configuration can be additively updated. The developed formulation allows direct application of nonlinear three-dimensional constitutive equations without zero...
-
Galerkin formulations of isogeometric shell analysis: Alleviating locking with Greville quadratures and higher-order elements
PublikacjaWe propose new quadrature schemes that asymptotically require only four in-plane points for Reissner–Mindlin shell elements and nine in-plane points for Kirchhoff–Love shell elements in B-spline and NURBS-based isogeometric shell analysis, independent of the polynomial degree p of the elements. The quadrature points are Greville abscissae associated with pth-order B-spline basis functions whose continuities depend on the specific...
Rok 2020
-
A pore-scale thermo–hydro-mechanical model for particulate systems
PublikacjaA pore scale numerical method dedicated to the simulation of heat transfer and associated thermo–hydro-mechanical couplings in granular media is described. The proposed thermo–hydro-mechanical approach builds on an existing hydromechanical model that employs the discrete element method for simulating the mechanical behavior of dense sphere packings and combines it with the finite volume method for simulating pore space fluid flow...
Rok 2008
-
A new open-source software developed for numerical simulations usingdiscrete modeling methods
PublikacjaThe purpose of this work is to present the development of an open-source software based on a discrete description of matter applied to study the behavior of geomaterials. This software uses Object Oriented Programming techniques, and its methodology design uses three different methods, which are the Discrete Element Method (DEM) [F. Donzé, S.A. Magnier, Formulation of a three-dimensional numerical model of brittle behavior, Geophys....
wyświetlono 1510 razy