ISSN:
eISSN:
Dyscypliny:
- inżynieria biomedyczna (Dziedzina nauk inżynieryjno-technicznych)
- inżynieria lądowa, geodezja i transport (Dziedzina nauk inżynieryjno-technicznych)
- inżynieria materiałowa (Dziedzina nauk inżynieryjno-technicznych)
- inżynieria mechaniczna (Dziedzina nauk inżynieryjno-technicznych)
- astronomia (Dziedzina nauk ścisłych i przyrodniczych)
- nauki fizyczne (Dziedzina nauk ścisłych i przyrodniczych)
Punkty Ministerialne: Pomoc
Rok | Punkty | Lista |
---|---|---|
Rok 2024 | 40 | Ministerialna lista czasopism punktowanych 2024 |
Rok | Punkty | Lista |
---|---|---|
2024 | 40 | Ministerialna lista czasopism punktowanych 2024 |
2023 | 40 | Lista ministerialna czasopism punktowanych 2023 |
2022 | 40 | Lista ministerialna czasopism punktowanych (2019-2022) |
2021 | 40 | Lista ministerialna czasopism punktowanych (2019-2022) |
2020 | 40 | Lista ministerialna czasopism punktowanych (2019-2022) |
2019 | 40 | Lista ministerialna czasopism punktowanych (2019-2022) |
2018 | 15 | A |
2017 | 15 | A |
2016 | 15 | A |
2015 | 15 | A |
2014 | 15 | A |
2013 | 15 | A |
2012 | 15 | A |
2011 | 15 | A |
Model czasopisma:
Punkty CiteScore:
Rok | Punkty |
---|---|
Rok 2023 | 1.2 |
Rok | Punkty |
---|---|
2023 | 1.2 |
2022 | 1.1 |
2021 | 0.9 |
2020 | 0.8 |
2019 | 0.9 |
2018 | 1 |
2017 | 0.8 |
2016 | 0.6 |
2015 | 0.4 |
2014 | 0.3 |
2013 | 0.3 |
2012 | 0.2 |
2011 | 0.1 |
Impact Factor:
Sherpa Romeo:
Prace opublikowane w tym czasopiśmie
Filtry
wszystkich: 2
Katalog Czasopism
Rok 2020
-
On Solvability of Boundary Value Problems for Elastic Micropolar Shells with Rigid Inclusions
PublikacjaIn the framework of the linear theory of micropolar shells, existence and uniqueness theorems for weak solutions of boundary value problems describing small deformations of elastic micropolar shells connected to a system of absolutely rigid bodies are proved. The definition of a weak solution is based on the principle of virial movements. A feature of this problem is non-standard boundary conditions at the interface between the...
Rok 2018
-
A Nonlinear Model of a Mesh Shell
PublikacjaFor a certain class of elastic lattice shells experiencing finite deformations, a continual model using the equations of the so-called six-parameter shell theory has been proposed. Within this model, the kinematics of the shell is described using six kinematically independent scalar degrees of freedom — the field of displacements and turns, as in the case of the Cosserat continuum, which gives reason to call the model under consideration...
wyświetlono 348 razy