Advanced genetic algorithm-based signal processing for multi-degradation detection in steam turbines - Publikacja - MOST Wiedzy

Wyszukiwarka

Advanced genetic algorithm-based signal processing for multi-degradation detection in steam turbines

Abstrakt

This research contributes to the field of reliability engineering and system safety by introducing an innovative diagnostic method to enhance the reliability and safety of complex technological systems. Steam turbines are specifically referred to. This study focuses on the integration of advanced signal processing techniques and engineering dynamics in addressing critical issues in the monitoring and maintenance of mechanical systems. By utilizing genetic algorithms, we improve the capability to detect, localize, and ascertain the causes of both singular and intricate degradations, including three-fold and four-fold faults, within steam turbine operations. We can detect degradation with accuracies of 72.6% for three-fold faults and 62.2% for four-fold faults. This significant advancement emphasizes the potential for improved machine and structural health monitoring, especially where non-stationary and random vibrations are common, such as in powertrain and drivetrain systems. This methodology is vital for the maintenance and oper- ational strategies of critical infrastructures like nuclear power plants, chemical plants, and manufacturing facilities where steam turbines play a crucial role. The novelty of this approach lies in the use of genetic algorithms for thermal-flow diagnostics of steam turbines, which had been unaddressed in literature. Moreover, the merger of theoretical and experimental aspects in this study underscores its relevance to practical applications, thereby demonstrating an original contribution to engineering knowledge and showcasing significant advancements over estab- lished methods. The research underscores the method’s potential as a universal tool for diag- nosing complex systems, representing an advance in reliability engineering practices. By applying genetic algorithms, a noticeable link to improving the safety and reliability of technological systems is established, offering valuable insights into the design, maintenance, and extension of the lifespan of critical infrastructure.

Cytowania

  • 0

    CrossRef

  • 0

    Web of Science

  • 0

    Scopus

Cytuj jako

Pełna treść

pełna treść publikacji nie jest dostępna w portalu

Słowa kluczowe

Informacje szczegółowe

Kategoria:
Publikacja w czasopiśmie
Typ:
artykuły w czasopismach
Opublikowano w:
MECHANICAL SYSTEMS AND SIGNAL PROCESSING nr 224,
ISSN: 0888-3270
Język:
angielski
Rok wydania:
2025
Opis bibliograficzny:
Drosińska-Komor M., Głuch J., Breńkacz Ł., Piotrowicz M., Ziółkowski P., Ziółkowska N.: Advanced genetic algorithm-based signal processing for multi-degradation detection in steam turbines// MECHANICAL SYSTEMS AND SIGNAL PROCESSING -Vol. 224, (2024),
DOI:
Cyfrowy identyfikator dokumentu elektronicznego (otwiera się w nowej karcie) 10.1016/j.ymssp.2024.112166
Źródła finansowania:
  • IDUB
Weryfikacja:
Politechnika Gdańska

wyświetlono 16 razy

Publikacje, które mogą cię zainteresować

Meta Tagi