Abstrakt
A tensor field is a tensor-valued function of position in space. The use of tensor fields allows us to present physical laws in a clear, compact form. A byproduct is a set of simple and clear rules for the representation of vector differential operators such as gradient, divergence, and Laplacian in curvilinear coordinate systems. The tensorial nature of a quantity permits us to formulate transformation rules for its components under a change of basis. These rules are relatively simple and easily grasped by any engineering student familiar with matrix operators in linear algebra. More complex problems arise when one considers the tensor fields that describe continuum bodies. In this case general curvilinear coordinates become necessary. The principal basis of a curvilinear system is constructed as a set of vectors tangent to the coordinate lines. Another basis, called the dual basis, is also constructed in a special manner. The existence of these two bases is responsible for the mysterious covariant and contravariant terminology encountered in tensor discussions. This book provides a clear, concise, and self-contained treatment of tensors and tensor fields. It covers the foundations of linear elasticity, shell theory, and generalized continuum media, offers hints, answers, and full solutions for many of the problems and exercises, and Includes a handbook-style summary of important tensor formulas. The book can be useful for beginners who are interested in the basics of tensor calculus. It also can be used by experienced readers who seek a comprehensive review on applications of the tensor calculus in mechanics. Contents: Chapter 1: Vectors and Transformations Chapter 2: Tensors and Tensor Fields Chapter 3: Elements of Differential Geometry Chapter 4: Linear Elasticity Chapter 5: Linear Elastic Shells Chapter 6: Mechanics of Generalized Media Appendices: Equation Summary for Tensor Analysis Some Formulas for Particular Coordinate Systems Main Equations of Linear Elasticity Hints and Answers
Cytowania
-
5 8
CrossRef
-
0
Web of Science
-
6 2
Scopus
Autorzy (3)
Cytuj jako
Pełna treść
pełna treść publikacji nie jest dostępna w portalu
Słowa kluczowe
Informacje szczegółowe
- Kategoria:
- Publikacja monograficzna
- Typ:
- książka - monografia autorska/podręcznik w języku o zasięgu międzynarodowym
- Język:
- angielski
- Rok wydania:
- 2018
- Opis bibliograficzny:
- Eremeev V., Cloud M., Lebedev L.: Applications of Tensor Analysis in Continuum Mechanics. New Jersey: World Scientific, 2018. 428 s. ISBN 978-981-3238-96-1
- DOI:
- Cyfrowy identyfikator dokumentu elektronicznego (otwiera się w nowej karcie) 10.1142/10959
- Weryfikacja:
- Politechnika Gdańska
wyświetlono 456 razy
Publikacje, które mogą cię zainteresować
Extended micropolar approach within the framework of 3M theories and variations thereof
- E. Vilchevskaya,
- W. Müller,
- V. Eremeev