Assessment of the Bulgarian Wastewater Treatment Plants’ Impact on the Receiving Water Bodies - Publikacja - MOST Wiedzy

Wyszukiwarka

Assessment of the Bulgarian Wastewater Treatment Plants’ Impact on the Receiving Water Bodies

Abstrakt

Deterioration of water quality is a major problem world widely according to many international non-governmental organizations (NGO). As one of the European Union (EU) countries, Bulgaria is also obliged by EU legislation to maintain best practices in assessing surface water quality and the efficiency of wastewater treatment processes. For these reasons studies were undertaken to utilize ecotoxicological (Microtox®, Phytotoxkit FTM, Daphtoxkit FTM), instrumental (to determine pH, electrical conductivity (EC), chemical oxygen demand, total suspended solids (TSS), total nitrogen (N) and phosphorus (P), chlorides, sulphates, Cr, Co, Cu, Cd, Ba, V, Mn, Fe, Ni, Zn, Se, Pb), as well as advanced chemometric methods (partial least squares–discriminant analysis (PLS-DA)) in data evaluation to comprehensively assess wastewater treatment plants' (WWTPs) effluents and surface waters quality around 21 major Bulgarian cities. The PLS-DA classification model for the physicochemical parameters gave excellent discrimination between WWTP effluents and surface waters with 93.65% correct predictions (with significant contribution of EC, TSS, P, N, Cl, Fe, Zn, and Se). The classification model based on ecotoxicological data identifies the plant test endpoints as having a greater impact on the classification model efficiency than bacterial, or crustaceans’ endpoints studied.

Cytowania

  • 1 3

    CrossRef

  • 0

    Web of Science

  • 1 9

    Scopus

Autorzy (8)

  • Zdjęcie użytkownika  Galina Yotova

    Galina Yotova

    • Sofia University “St. Kliment Ohridski” Chair of Analytical Chemistry
  • Zdjęcie użytkownika dr Svetlana Lazarova

    Svetlana Lazarova dr

    • University of Architecture, Civil Engineering and Geodesy Chair of Water Supply, Water and Wastewater Treatment
  • Zdjęcie użytkownika  Boika Zlateva

    Boika Zlateva

    • Sofia University “St. Kliment Ohridski” Chair of Analytical Chemistry
  • Zdjęcie użytkownika dr Veronika Mihaylova

    Veronika Mihaylova dr

    • Sofia University “St. Kliment Ohridski” Chair of Analytical Chemistry
  • Zdjęcie użytkownika prof. Tony Venelinov

    Tony Venelinov prof.

    • University of Architecture, Civil Engineering and Geodesy Chair of Water Supply, Water and Wastewater Treatment
  • Zdjęcie użytkownika  Stefan Tsakovski

    Stefan Tsakovski

    • Sofia University “St. Kliment Ohridski” Chair of Analytical Chemistry

Cytuj jako

Pełna treść

pobierz publikację
pobrano 94 razy
Wersja publikacji
Accepted albo Published Version
Licencja
Creative Commons: CC-BY otwiera się w nowej karcie

Słowa kluczowe

Informacje szczegółowe

Kategoria:
Publikacja w czasopiśmie
Typ:
artykuł w czasopiśmie wyróżnionym w JCR
Opublikowano w:
MOLECULES nr 24, strony 1 - 15,
ISSN: 1420-3049
Język:
angielski
Rok wydania:
2019
Opis bibliograficzny:
Yotova G., Lazarova S., Kudłak B., Zlateva B., Mihaylova V., Wieczerzak M., Venelinov T., Tsakovski S.: Assessment of the Bulgarian Wastewater Treatment Plants’ Impact on the Receiving Water Bodies// MOLECULES. -Vol. 24, iss. 12 (2019), s.1-15
DOI:
Cyfrowy identyfikator dokumentu elektronicznego (otwiera się w nowej karcie) 10.3390/molecules24122274
Bibliografia: test
  1. Chutter, F. Research on the rapid biological assessment of water quality impacts in streams and rivers. WRC Report No 422/1/98. Water Research Commission: Pretoria, South Africa, 1998. otwiera się w nowej karcie
  2. Cantinho, P.; Matos, M.; Trancoso, M.A.; Correia dos Santos, M.M. Behaviour and fate of metals in urban wastewater treatment plants: A review. Int. J. Environ. Sci. Technol. 2016, 13, 359-386, DOI:https://doi.org/10.1007/s13762-015-0887-x. otwiera się w nowej karcie
  3. Barreca, S.; Busetto, M.; Vitelli, M.; Colzani, L.; Clerici, L.; Dellavedova, P. Online Solid-Phase Extraction LC-MS/MS: A Rapid and Valid Method for the Determination of Perfluorinated Compounds at Sub ng·L−1 Level in Natural Water. J. Chem. 2018, 2018, 3780825, DOI:https://doi.org/10.1155/2018/3780825. otwiera się w nowej karcie
  4. Barreca, S. Determination of estrogenic endocrine disruptors in water at sub-ng L−1 levels in compliance with Decision 2015/495/EU using offline-online solid phase extraction concentration coupled with high performance liquid chromatography-tandem mass spectrometry. Microchem. J. 2019, 147, 1186-1191, DOI:10.1016/j.microc.2019.04.030. otwiera się w nowej karcie
  5. Victor, R.; Kotter, R.; O'Brien, G.; Mitropoulos, M.; Panayi, G. WHO Guidelines for the safe use of wastewater, excreta and greywater -Volume 1: Policy and regulatory aspects. Int. J. Environ. Stud. 2006, 65, 157-176. otwiera się w nowej karcie
  6. The Millennium Development Goals Report; The United Nation, New York, NY, USA, 2015. otwiera się w nowej karcie
  7. European Parliament, Council of the European Union. Directive 2000/60/EC of the European Parliament and of the Council establishing a framework for Community action in the field of water policy. OJ. L. 2000, 327, 1-73. otwiera się w nowej karcie
  8. Council of the European Union. Council Directive 91/271/EEC concerning urban waste-water treatment. OJ. L. 1991, 135, 40-52. otwiera się w nowej karcie
  9. Council of the European Union. Council Directive 98/83/EC on the quality of water intended for human consumption. OJ. L. 1998, 330, 32-54. otwiera się w nowej karcie
  10. Teodosiu, C.; Barjoveanu, G.; Teleman, D. Sustainable water resources management 1. River basin management and the EC Water Framework Directive. Environ. Eng. Manag. J. 2003, 2, 377-394, DOI:10.30638/eemj.2003.033. otwiera się w nowej karcie
  11. Johnson, C. Toward post-sovereign environmental governance? Politics, scale, and EU water framework directive. Water Altern. 2012, 5, 83-97.
  12. Carter, J. Spatial planning, water and the Water Framework Directive: Insights from theory and practice. Geogr. J. 2007, 173, 330-342, DOI:10.1111/j.1475-4959.2007.00257.x. otwiera się w nowej karcie
  13. Josefsson, H. Achieving ecological objectives, Laws 2012, 1, 39-63, DOI:https://doi.org/10.3390/laws1010039. otwiera się w nowej karcie
  14. Van Rijswick, H.; Backes, C. Ground breaking landmark case on environmental quality standards? J. Eur. Environ. Plan. Law. 2015, 12, 363-377, DOI:10.1163/18760104-01204008. otwiera się w nowej karcie
  15. Council of the European Union. Council Directive 75/440/EEC concerning the quality required of surface water intended for the abstraction of drinking water in the Member States. OJ. L. 1975, 194, 26-31. otwiera się w nowej karcie
  16. Junninen, H.; Mønster, J.; Rey, M; Cancelinha, J.; Douglas, K.; Duane, M.; Forcina, V.; Müller, A.; Lagler, F.; Marelli, L.; et al. Quantifying the impact of residential heating on the urban air quality in a typical European coal combustion region. Environ. Sci. Technol. 2009, 43, 7964-7970, DOI:10.1021/es8032082. otwiera się w nowej karcie
  17. Singh, K.P.; Malik, A.; Mohan, D.; Sinha, S.; Singh, V.K. Chemometric data analysis of pollutants in wastewater-a case study. Anal. Chim. Acta. 2005, 532, 15-25, DOI:10.1016/j.aca.2004.10.043. otwiera się w nowej karcie
  18. Einax, J.W.; Soldt, U. Geostatistical and multivariate statistical methods for the assessment of polluted soils-merits and limitations. Chemometr. Intell. Lab. Syst. 1999, 46, 79-91, DOI: 10.1016/S0169- 7439(98)00152-X. otwiera się w nowej karcie
  19. Barreca, S.; Mazzola, A.; Orecchio, S.; Tuzzolino, N. Polychlorinated Biphenyls in Sediments from Sicilian Coastal Area (Scoglitti) using Automated Soxhlet, GC-MS, and Principal Component Analysis. Polycycl. Aromat. Comp. 2014, 34, 237-262, DOI: 10.1080/10406638.2014.886078. otwiera się w nowej karcie
  20. Gurjar, S.K.; Tare, V. Spatial-temporal assessment of water quality and assimilative capacity of river Ramganga, a tributary of Ganga using multivariate analysis and QUEL2K. J. Clean. Prod. 2019, 222, 550- 564, DOI:https://doi.org/10.1016/j.jclepro.2019.03.064. otwiera się w nowej karcie
  21. Li, T.; Li, S.; Liang, C.; Bush, R.T.; Xiong, L.; Jiang, Y. A comparative assessment of Australia's Lower Lakes water quality under extreme drought and post-drought conditions using multivariate statistical techniques. J. Clean. Prod. 2018, 190, 1-11, DOI:https://doi.org/10.1016/j.jclepro.2018.04.121. otwiera się w nowej karcie
  22. Bilgin, A. Evaluation of surface water quality by using Canadian Council of Ministers of the Environment Water Quality Index (CCME WQI) method and discriminant analysis method: A case study Coruh River Basin. Environ. Monit. Assess. 2018, 190, 554, DOI:https://doi.org/10.1007/s10661-018-6927-5. otwiera się w nowej karcie
  23. Singh, K.P.; Malik, A.; Mohan, D.; Sinha, S. Multivariate statistical techniques for the evaluation of spatial and temporal variations in water quality of Gomti River (India)-A case study. Water Res. 2004, 38, 3980- 3992, Doi:10.1016/j.watres.2004.06.011. otwiera się w nowej karcie
  24. Astel, A.; Tsakovski, S.; Barbieri, P.; Simeonov, V. Comparison of self-organizing maps classification approach with cluster and principal components analysis for large environmental data sets. Water Res. 2007, 41, 4566-4578, DOI:10.1016/j.watres.2007.06.030. otwiera się w nowej karcie
  25. Olkowska, E.; Kudłak, B.; Tsakovski, S.; Ruman, M.; Simeonov, V; Polkowska, Z. Assessment of the water quality of Kłodnica River catchment using self-organizing maps. Sci. Total Environ. 2014, 476-477, 477-484, DOI:http://dx.doi.org/10.1016/j.scitotenv.2014.01.044. otwiera się w nowej karcie
  26. Acquavita, A.; Aleffi, I.F.; Benci, C.; Bettoso, N.; Crevatin, E.; Milani, L.; Tamberlich, F.; Toniatti, L.; Barbieri, P.; Licen, S.; et al. Annual characterization of the nutrients and trophic state in a Mediterranean coastal lagoon: The Marano and Grado Lagoon (northern Adriatic Sea). Reg. Stud. Mar. Sci. 2015, 2, 132-144, DOI:http://dx.doi.org/10.1016/j.rsma.2015.08.017. otwiera się w nowej karcie
  27. Franklin, J.B.; Sathish, T.; Vinithkumar, N.V.; Kirubagaran, R.; Madeswaran, P. Seawater quality conditions of the south Andaman Sea (Bay of Bengal, Indian Ocean) in lustrum during 2010s decade. Mar. Pollut. Bull. 2018, 136, 424-434, DOI:https://doi.org/10.1016/j.marpolbul.2018.09.038. otwiera się w nowej karcie
  28. Bostanmaneshrad, F.; Partani, S.; Noori, R.; Nachtnebel, H-P.; Berndtsson, R.; Adamowski, J.F. Relationship between water quality and macro-scale parameters (land use, erosion, geology, and population density) in the Siminehrood River Basin. Sci. Total Environ. 2018, 639, 1588-1600. DOI: https://doi.org/10.1016/j.scitotenv.2018.05.244. otwiera się w nowej karcie
  29. Voyslavov, T.; Tsakovski, S.; Simeonov, V. Hasse diagram technique as a tool for water quality assessment. Anal. Chim. Acta. 2013, 770, 29-35, DOI:http://dx.doi.org/10.1016/j.aca.2013.01.063. otwiera się w nowej karcie
  30. Voyslavov, T.; Tsakovski, S.; Simeonov, V. Surface water quality assessment using self-organizing maps and Hasse diagram technique. Chemom. Intell. Lab. Syst. 2012, 118, 280-286, DOI:10.1016/j.chemolab.2012.05.011. otwiera się w nowej karcie
  31. Tsakovski, S.; Astel, A.; Simeonov, V. Assessment of the water quality of a river catchment by chemometric expertise. J. Chemometrics. 2010; 24, 694-702, DOI:10.1002/cem.1333. otwiera się w nowej karcie
  32. Singh, K.R.; Goswami, A.P.; Kalamdhad, A.S.; Kumar, B. Assessment of surface water quality of Pagladia, Beki and Kolong river (Assam, India) using multivariate statistical techniques. Intl. J. River Basin Manag. 2019, 2019, 1-10, DOI:10.1080/15715124.2019.1566236. otwiera się w nowej karcie
  33. Gromski, P.S.; Muhamadali, H.; Ellis, D.I.; Xu, Y.; Correa, E.; Turner, M.L.; Goodacre, R. A tutorial review: Metabolomics and partial least squares-discriminant analysis -a marriage of convenience or a shotgun wedding. Anal. Chim. Acta. 2015, 879, 10-23, DOI: 10.1016/j.aca.2015.02.012. otwiera się w nowej karcie
  34. Lee, L.C.; Liong, C-Y.; Jemain, A.A. Partial Least Squares-Discriminant Analysis (PLS-DA) for classification of high-dimensional (HD) data: A review of contemporary practice strategies and knowledge gaps. Analyst 2018, 143, 3526-3539, DOI:10.1039/C8AN00599K. otwiera się w nowej karcie
  35. Platikanov, S.; Rodriguez-Mozaz, S.; Huerta, B.; Barceló, D.; Cros, J.; Batle, M.; Poch, G.; Tauler, R. Chemometrics quality assessment of wastewater treatment plant effluents using physicochemical parameters and UV absorption measurements. J. Environ. Manage. 2014, 140, 33-44, DOI:10.1016/j.jenvman.2014.03.006. otwiera się w nowej karcie
  36. Tobiszewski, M.; Tsakovski, S.; Simeonov, V.; Namiesnik, J. Chlorinated solvents in a petrochemical wastewater treatment plant: An assessment of their removal using self-organising maps. Chemosphere 2012, 87, 962-968, DOI:10.1016/j.chemosphere.2012.01.057. otwiera się w nowej karcie
  37. Kudłak, B.; Wieczerzak, M.; Yotova, G.; Tsakovski, S.; Simeonov, V.; Namiesnik, J. Environmental risk assessment of Polish wastewater treatment plant activity. Chemosphere 2016, 160, 181-188, DOI:10.1016/j.chemosphere.2016.06.086. otwiera się w nowej karcie
  38. Manusadzianas, L.; Balkelyte, L.; Sadauskas, K.; Blinova, I.; Põllumaa, L.; Kahru, A. Ecotoxicological study of Lithuanian and Estonian wastewaters: Selection of the biotests, and correspondence between toxicity and chemical-based indices. Aquat. Toxicol. 2003, 63, 27-41, DOI:10.1016/S0166-445X(02)00132-7. otwiera się w nowej karcie
  39. Wang, N.; Zeng, N.N.; Zhu, W. Sensitivity, Specificity, Accuracy, Associated Confidence Interval and ROC Analysis with Practical SAS Implementations. In proceedings of the Northeast SAS User Group Section of Health Care and Life Sciences, Baltimore, Maryland, MD, USA, 14-17 November 2010; pp. 1-9. otwiera się w nowej karcie
  40. Tjandraatmadja, G.; Pollard, C.; Sheedy, C.; Gozukara, Y. Sources of contaminants in domestic wastewater: Nutrients and additional elements from household products. CSIRO Publishing: Canberra, Australia, 2010.
  41. European Commission. Pollutants in urban wastewater and sewage sludge; Office for Official Publications of the European Communities: Luxembourg, 2001; pp. 12-63. otwiera się w nowej karcie
  42. DIN 38409-41:1980-12 -German standard methods for the examination of water, waste water and sludge; otwiera się w nowej karcie
  43. Summary effect and substance characteristics (group H); Determination of the chemical oxygen demand (COD) in the range above 15 mg / l (H 41). German Institute for Standardisation, 1980. DOI: 10.31030/1209856. otwiera się w nowej karcie
  44. Hach Company. Working Procedure: LCK 138 LATON, 1-16 mg/L Total Nitrogen, TNb DOC312.53.94004. Available online: https://uk.hach.com/asset-get.download.jsa?id=52788795653 (accessed on 9 June 2019). otwiera się w nowej karcie
  45. Hach Company. Working procedure: LCK348 Phosphate DOC312.53.94020 Available online: https://uk.hach.com/asset-get.download.jsa?id=25593618013 (accessed on 9 June 2019). otwiera się w nowej karcie
  46. Hach Company. User Manual: 5014 Probe DOC012.98.90299. Available online: https://uk.hach.com/asset- get.download.jsa?id=25593610956 (accessed on 9 June 2019). otwiera się w nowej karcie
  47. Hach Company. User Manual: 5070 Probe. DOC012.98.90314. Available online: https://uk.hach.com/asset- get.download.jsa?id=25593610971 (accessed on 9 June 2019). otwiera się w nowej karcie
  48. BSI. BS EN 872:2005 -Water Quality-Determination of Suspended Solids-Method by Filtration Through Glass Fibre Filters. BSI, 2005. otwiera się w nowej karcie
  49. Wieczerzak, M.; Kudłak, B.; Namieśnik, J. Impact of selected drugs and their binary mixtures on the germination of Sorghum bicolor (sorgo) seeds. Env. Sci. Pol. Res. 2018, 25, 18717-18727, DOI:10.1007/s11356- 018-2049-4. otwiera się w nowej karcie
  50. Schneider, C.A.; Rasband, W.S.; Eliceiri, K.W. NIH Image to ImageJ: 25 years of image analysis. Nat. Methods 2012, 9, 671-675, DOI:10.1038/nmeth.2089. otwiera się w nowej karcie
  51. Szymańska E.; Saccenti, E.; Smilde, A.K.; Westerhuis, J.A. Double-check: Validation of diagnostic statistics for PLS-DA models in metabolomics studies. Metabolomics. 2012, 8, S3-S16, DOI:10.1007/s11306-011-0330- 3. otwiera się w nowej karcie
Źródła finansowania:
  • Bułgarski Grant DN 19/15
Weryfikacja:
Politechnika Gdańska

wyświetlono 188 razy

Publikacje, które mogą cię zainteresować

Meta Tagi