Deep eutectic solvents based highly efficient extractive desulfurization of fuels – Eco-friendly approach - Publikacja - MOST Wiedzy

Wyszukiwarka

Deep eutectic solvents based highly efficient extractive desulfurization of fuels – Eco-friendly approach

Abstrakt

The developed process is based on alternative, green and cheap solvents for efficient desulfurization of fuels. Several deep eutectic solvents (DESs) were successfully synthesized and studied as extraction solvents for desulfurization of model fuel containing thiophene (T), benzothiophene (BT) and dibenzothiophene (DBT). The most important extraction parameters (i.e. kind of DES, DES: fuel volume ratio, hydrogen bond acceptor: hydrogen bond donor mole ratio, time of extraction and temperature) were optimized using central composite design model. Furthermore, the mutual solubility of DES and model fuel and influence of multistage extraction, reusability, regeneration of DES and content of aromatic groups in fuel are discussed followed by explanation of desulfurization mechanism, by means of density functional theory (DFT) as well as FT-IR analysis. The studies revealed high desulfurization effectiveness resulting in 91.5%, 95.4% and 99.2% removal of T, BT and DBT respectively in a single stage extraction. A three stage desulfurization provide >99.99% removal of T, BT and DBT. The research on the desulfurization mechanism revealed that π-π interaction is the main driving force for desulfurization process based on DES.

Cytowania

  • 1 0 1

    CrossRef

  • 0

    Web of Science

  • 1 0 2

    Scopus

Cytuj jako

Pełna treść

pobierz publikację
pobrano 127 razy
Wersja publikacji
Accepted albo Published Version
Licencja
Creative Commons: CC-BY otwiera się w nowej karcie

Słowa kluczowe

Informacje szczegółowe

Kategoria:
Publikacja w czasopiśmie
Typ:
artykuły w czasopismach
Opublikowano w:
JOURNAL OF MOLECULAR LIQUIDS nr 296, strony 1 - 11,
ISSN: 0167-7322
Język:
angielski
Rok wydania:
2019
Opis bibliograficzny:
Makoś P., Boczkaj G.: Deep eutectic solvents based highly efficient extractive desulfurization of fuels – Eco-friendly approach// JOURNAL OF MOLECULAR LIQUIDS -Vol. 296, (2019), s.1-11
DOI:
Cyfrowy identyfikator dokumentu elektronicznego (otwiera się w nowej karcie) 10.1016/j.molliq.2019.111916
Bibliografia: test
  1. International Energy Agency, Energy and air pollution, world energy outlook special report, https://www.iea.org/publications/freepublications/publication/ WorldEnergyOutlookSpecialReport2016EnergyandAirPollution.pdf, Accessed date: 17 September 2018. otwiera się w nowej karcie
  2. S.A. Dharaskar, K.L. Wasewar, M.N. Varma, D.Z. Shende, K.K. Tadi, C.K. Yoo, Syn- thesis, characterization, and application of novel trihexyltetradecylphosphoniumbis (2,4,4-trimethylpentyl) phosphinate for extractive desulfurization of liquid fuel, Fuel Process. Technol. 123 (2014) 1-10, https://doi.org/10.1016/j.fuproc.2014.02.001. otwiera się w nowej karcie
  3. C.F. Mao, R.X. Zhao, X.P. Li, X.H. Gao, Trifluoromethanesulfonic acid-based DESs as extractants and catalysts for removal of DBT from model oil, RSC Adv. 7 (2017) 12805-12811, https://doi.org/10.1039/C6RA28448E. otwiera się w nowej karcie
  4. A. Fihri, R. Mahfouz, A. Shahrani, I. Taie, G. Alabedi, Pervaporative desulfurization of gasoline: a review, Chem. Eng. Process 107 (2016) 94-105, https://doi.org/10.1515/ aep-2015-0013. otwiera się w nowej karcie
  5. V.C. Srivastava, An evaluation of desulfurization technologies for sulfur removal from liquid fuels, RSC Adv. 2 (2012) 759-783, https://doi.org/10.1039/C1RA00309G. otwiera się w nowej karcie
  6. R. Javadli, A. Klerk, Desulfurization of heavy oil, Appl. Petrochem. Res. 1 (2012) 3-19, https://doi.org/10.1007/s13203-012-0006-6. otwiera się w nowej karcie
  7. J.M. Kwon, J.H. Moon, Y.S. Bae, D.G. Lee, H.C. Sohn, C.H. Lee, Adsorptive desulfuriza- tion and denitrogenation of refinery fuels using mesoporous silica adsorbents, Chem. Sus. Chem. 1 (2008) 307-309, https://doi.org/10.1002/cssc.200700011. otwiera się w nowej karcie
  8. S. Bhatia, D.K. Sharma, Biodesulfurization of dibenzothiophene, its alkylated deriva- tives and crude oil by a newly isolated strain PantoeaagglomeransD23W3, Biochem. Eng. J. 50 (2010) 104-109, https://doi.org/10.1016/j.bej.2010.04.001. otwiera się w nowej karcie
  9. J. Wang, L. Zhang, Y. Sun, B. Jiang, Y. Chen, X. Gao, H. Yang, Deep catalytic oxidative desulfurization of fuels by novel Lewis acidic ionic liquids, Fuel Process. Technol. 177 (2018) 81-88, https://doi.org/10.1016/j.fuproc.2018.04.013. otwiera się w nowej karcie
  10. Y. Gao, Z. Lv, R. Gao, G. Zhang, Y. Zheng, J. Zhao, Oxidative desulfurization process of model fuel under molecular oxygen by polyoxometalate loaded in hybrid material CNTs@MOF-199 as catalyst, J. Hazard Mater. 359 (2018) 258-265, https://doi.org/ 10.1016/j.jhazmat.2018.07.008. otwiera się w nowej karcie
  11. E. Kianpour, S. Azizian, M. Yarie, M.A. Zolfigol, M. Bayat, A task-specific phospho- nium ionic liquid as an efficient extractant for green desulfurization of liquid fuel: an experimental and computational study, Chem. Eng. J. 295 (2016) 500-508, https://doi.org/10.1016/j.cej.2016.03.072. otwiera się w nowej karcie
  12. F.L. Yu, C.Y. Liu, B. Yuan, P.H. Xie, C.X. Xie, S.T. Yu, Energy-efficient extractive desul- furization of gasoline by polyether-based ionic liquids, Fuel 177 (2016) 39-45, https://doi.org/10.1016/j.fuel.2016.02.063. otwiera się w nowej karcie
  13. J.J. Gao, H. Meng, Y.Z. Lu, H.X. Zhang, C.X. Li, A carbonium pseudo ionic liquid with excellent extractive desulfurization performance, AIChE J. 59 (2013) 948-958, https://doi.org/10.1002/aic.13869. otwiera się w nowej karcie
  14. L.F. Ramirez-Verduzco, F. Murrieta-Guevara, J.L. Garcia-Gutierrez, R. SaintMartin- Castanon, M.D. Martinez-Guerrero, M.D. Montiel-Pacheco, R. Mata-Diaz, Desulfuri- zation of middle distillates by oxidation and extraction process, Pet. Sci. Technol. 22 (2004) 129-139, https://doi.org/10.1081/LFT-120028528. otwiera się w nowej karcie
  15. Y.J. Tian, Y. Yao, Y.H. Zhi, L.J. Yan, S.X. Lut, Combined extraction-oxidation system for oxidative desulfurization (ODS) of a model fuel, Energy Fuels 29 (2015) 618-625, https://doi.org/10.1021/ef502396b. otwiera się w nowej karcie
  16. T. Adzamic, K. Sertic-Bionda, N. Marcec-Rahelic, Modeling of the fcc gasoline desul- furization process by liquid extraction with sulfolane, Pet. Sci. Technol. 28 (2010) 1936-1945, https://doi.org/10.1080/10916460903330056. otwiera się w nowej karcie
  17. A. Bösmann, L. Datsevich, A. Jess, A. Lauter, C. Schmitz, P. Wasserscheid, Deep desul- furization of diesel fuel by extraction with ionic liquids, Chem. Commun. 23 (2001) 2494-2495, https://doi.org/10.1039/B108411A. otwiera się w nowej karcie
  18. R. Martíınez-Palou, R. Luque, Applications of ionic liquids in the removal of contam- inants from refinery feedstocks: an industrial perspective, Energy Environ. Sci. 7 (2014) https://doi.org/10.1039/C3EE43837F2414-24147. otwiera się w nowej karcie
  19. M.H. Ibrahim, M. Hayyan, M.A. Hashim, A. Hayyan, The role of ionic liquids in desul- furization of fuels: a review, Renew. Sustain. Energy Rev. 76 (2017) 1534-1549, https://doi.org/10.1016/j.rser.2016.11.194. otwiera się w nowej karcie
  20. N. Gathergood, M.T. Garcia, P.J. Scammells, Biodegradable ionic liquids: part I. Con- cept, preliminary targets and evaluation, Green Chem. 6 (2004) 166-175, https:// doi.org/10.1039/B315270G. otwiera się w nowej karcie
  21. A. Romero, A. Santos, J. Tojo, A. Rodriguez, Toxicity and biodegradability of imidazolium ionic liquids, J. Hazard Mater. 151 (2008) 268-273, https://doi.org/ 10.1016/j.jhazmat.2007.10.079. otwiera się w nowej karcie
  22. A.P. Abbott, D. Boothby, G. Capper, D.L. Davies, R.K. Rasheed, Deep eutectic solvents formed between choline chloride and carboxylic acids: versatile alternatives to ionic liquids, J. Am. Chem. Soc. 126 (2004) 9142-9147, https://doi.org/10.1021/ ja048266j. otwiera się w nowej karcie
  23. M. Francisco, A. van den Bruinhorst, M.C. Kroon, Low-transition-temperature mix- tures (LTTMs): a new generation of designer solvents, Angew. Chem., Int. Ed. Engl. 52 (2012) 3074-3085, https://doi.org/10.1002/anie.201207548. otwiera się w nowej karcie
  24. C.A. Nkuku, R.J. LeSuer, Electrochemistry in deep eutectic solvents, J. Phys. Chem. B 111 (2007) 13271-13277, https://doi.org/10.1021/jp075794j. otwiera się w nowej karcie
  25. C.M.A. Brett, Deep eutectic solvents and applications in electrochemical sensing, Curr. Opin. Electrochem. 10 (2018) 143-148, https://doi.org/10.1016/j.coelec. 2018.05.016. otwiera się w nowej karcie
  26. S.T. Williamson, K. Shahbaz, F.S. Mjalli, I.M. AlNashef, M.M. Farid, Application of deep eutectic solvents as catalysts for the esterification of oleic acid with glycerol, Renew. Eng. 114 (2017) 480-488, https://doi.org/10.1016/j.renene.2017.07.046. otwiera się w nowej karcie
  27. L.I.N. Tomé, V. Baião, W. Silva, C.M.A. Brett, Deep eutectic solvents for the production and application of new materials, Appl. Mater. Today. 10 (2018) 30-50, https://doi. org/10.1016/j.apmt.2017.11.005. otwiera się w nowej karcie
  28. A. Abo-Hamad, M. Hayyan, M.A. AlSaadi, M.A. Hashim, Potential applications of deep eutectic solvents in nanotechnology, Chem. Eng. J. 273 (2015) 551-567, https://doi. org/10.1016/j.cej.2015.03.091. otwiera się w nowej karcie
  29. A. Shishov, A. Bulatov, M. Locatelli, S. Carradori, V. Andruch, Application of deep eu- tectic solvents in analytical chemistry. A review, Microchem. J. 135 (2017) 33-38, https://doi.org/10.1016/j.microc.2017.07.015. otwiera się w nowej karcie
  30. P. Makoś, A. Przyjazny, G. Boczkaj, Hydrophobic deep eutectic solvents as "green" extraction media for polycyclic aromatic hydrocarbons in aqueous samples, J. Chromatogr. A 1570 (2018) 28-37, https://doi.org/10.1016/j.chroma.2018.07.070. otwiera się w nowej karcie
  31. P. Makoś, A. Fernandes, A. Przyjazny, G. Boczkaj, Sample preparation procedure using extraction and derivatization of carboxylic acids from aqueous samples by means of deep eutectic solvents for gas chromatographic-mass spectrometric anal- ysis, J. Chromatogr. A 1555 (2018) 10-19, https://doi.org/10.1016/j.chroma.2018. 04.054. otwiera się w nowej karcie
  32. W.N.A.W. Mokhtar, W.A.W.A. Bakar, R. Ali, A.A.A. Kadir, Deep desulfurization of model diesel by extraction with N,N-dimethylformamide: optimization by Box- Behnken design, J. Taiwan Inst. Chem. Eng. 45 (2014) 1542-1548, https://doi.org/ 10.1016/j.jtice.2014.03.017. otwiera się w nowej karcie
  33. S.E.E. Warrag, C.J. Peters, M.C. Kroon, Deep eutectic solvents for highly efficient sep- arations in oil and gas industries, Curr. Opin. Green Sustain. Chem. 5 (2017) 55-60, https://doi.org/10.1016/j.cogsc.2017.03.013. otwiera się w nowej karcie
  34. J.M. Silva, R.L. Reis, A. Paiva, A.R.C. Duarte, Design of functional therapeutic deep eu- tectic solvents based on choline chloride and ascorbic acid, ACS Sustain. Chem. Eng. 6 (2018) 10355-10363, https://doi.org/10.1021/acssuschemeng.8b01687. otwiera się w nowej karcie
  35. J. Li, H. Xiao, X. Tang, M. Zhou, Green carboxylic acid-based deep eutectic solvents as solvents for extractive desulfurization, Energy Fuels 30 (2016) 5411-5418, https:// doi.org/10.1021/acs.energyfuels.6b00471. otwiera się w nowej karcie
  36. H. Xu, D. Zhang, F. Wu, X. Wei, J. Zhang, Deep desulfurization of fuels with cobalt chloride-choline chloride/polyethylene glycol metal deep eutectic solvents, Fuel 225 (2018) 104-110, https://doi.org/10.1016/j.fuel.2018.03.159. otwiera się w nowej karcie
  37. C. Li, D. Li, S. Zou, Z. Li, J. Yin, A. Wang, Y. Cui, Z. Yao, Q. Zhao, Extraction desulfuriza- tion process of fuels with ammonium-based deep eutectic solvents, Green Chem. 15 (2013) 2793-2799, https://doi.org/10.1039/C3GC41067F. otwiera się w nowej karcie
  38. D. Chandran, M. Khalid, R. Walvekar, N.M. Mubarak, S. Dharaskar, W.Y. Wong, T.C.S.M. Gupta, Deep eutectic solvents for extraction-desulphurization: a review, J. Mol. Liq. 275 (2019) 312-322, https://doi.org/10.1016/j.molliq.2018.11.051. otwiera się w nowej karcie
  39. K.H. Almashjary, M. Khalid, S. Dharaskar, P. Jagadish, R. Walvekar, T.C.S.M. Gupta, Optimisation of extractive desulfurization using Choline Chloride-based deep eutec- tic solvents, Fuel 234 (2018) 1388-1400, https://doi.org/10.1016/j.fuel.2018.08.005. otwiera się w nowej karcie
  40. F. Lima, J. Gouvenaux, L.C. Branco, A.J.D. Silvestre, I.M. Marrucho, Towards a sulfur clean fuel: deep extraction of thiophene and dibenzothiophene using polyethylene glycol-based deep eutectic solvents, Fuel 234 (2018) 414-421, https://doi.org/10. 1016/j.fuel.2018.07.043. otwiera się w nowej karcie
  41. W.S.A. Rahma, F.S. Mjalli, T. Al-Wahaibi, A.A. Al-Hashmi, Polymeric-based deep eu- tectic solvents for effective extractive desulfurization of liquid fuel at ambient con- ditions, Chem. Eng. Res. Des. 120 (2017) 271-283, https://doi.org/10.1016/j.cherd. 2017.02.025. otwiera się w nowej karcie
  42. Z.S. Gano, F.S. Mjalli, T. Al-Wahaibi, Y. Al-Wahaibi, I.M. AlNashef, Extractive desulfur- ization of liquid fuel with FeCl3-based deep eutectic solvents: experimental design and optimization by central-composite design, Chem. Eng. Process 93 (2015) 10-20, https://doi.org/10.1016/j.cep.2015.04.001. otwiera się w nowej karcie
  43. X. Zhao, G. Zhu, L. Jiao, F. Yu, C. Xie, Formation and extractive desulfurization mech- anisms of aromatic acid based deep eutectic solvents: an experimental and theoret- ical study, Chem. Eur J. 24 (2018) 11021-11032, https://doi.org/10.1002/chem. 201803229. otwiera się w nowej karcie
  44. D.V. Wagle, H. Zhao, C.A. Deakyne, G.A. Baker, Quantum chemical evaluation of deep eutectic solvents for the extractive desulfurization of fuel, ACS Sustain. Chem. Eng. 6 (2018) 7525-7531, https://doi.org/10.1021/acssuschemeng.8b00224. otwiera się w nowej karcie
  45. W. Jiang, H. Li, C. Wang, W. Liu, T. Guo, H. Liu, W. Zhu, H. Li, Synthesis of ionic-liquid- based deep eutectic solvents for extractive desulfurization of fuel, Energy Fuels 30 (2016) 8164-8170, https://doi.org/10.1021/acs.energyfuels.6b01976. otwiera się w nowej karcie
  46. D.V. Wagle, G.A. Baker, E. Mamontov, Differential microscopic mobility of compo- nents within a deep eutectic solvent, J. Phys. Chem. Lett. 6 (2015) 2924-2928, https://doi.org/10.1021/acs.jpclett.5b01192. otwiera się w nowej karcie
  47. Z. Li, D. Liu, Z. Men, L. Song, Y. Lv, P. Wu, B. Lou, Y. Zhang, N. Shi, Q. Chen, Insight into effective denitrification and desulfurization of liquid fuel with deep eutectic sol- vents: an innovative evaluation criterion to filtrate extractants using the compatibil- ity index, Green Chem. 20 (2018) 3112-3120, https://doi.org/10.1039/ C8GC00828K. otwiera się w nowej karcie
  48. T. Lu, F. Chen, Multiwfn: a multifunctional wavefunction analyzer, J. Comput. Chem. 33 (2012) 580-592, https://doi.org/10.1002/jcc.22885. otwiera się w nowej karcie
  49. T. Lu, F. Chen, Quantitative analysis of molecular surface based on improved Marching Tetrahedra algorithm, J. Mol. Graph. Model. 38 (2012) 314-323, https:// doi.org/10.1016/j.jmgm.2012.07.004. otwiera się w nowej karcie
  50. E.R. Johnson, S. Keinan, P. Mori-Sanchez, J. Contreras-Garcıa, A.J. Cohen, W. Yang, Re- vealing noncovalent interactions, J. Am. Chem. Soc. 132 (2010) 6498-6506, https:// doi.org/10.1021/ja100936w. otwiera się w nowej karcie
  51. H.R. Lozano, F. Martínez, Thermodynamics of partitioning and solvation of ketoprofen in some organic solvent/buffer and liposome systems, Braz. J. Pharm. Sci. 42 (2006) 601-613, https://doi.org/10.1590/S1516-93322006000400016. otwiera się w nowej karcie
  52. M. Jafari, S.L. Ebrahimi, M.R. Khosravi-Nikou, Ultrasound-assisted oxidative desul- furization and denitrogenation of liquid hydrocarbon fuels: a critical review, Ultrason. Sonochem. 40 (2018) 955-968, https://doi.org/10.1016/j.ultsonch.2017. 09.002. otwiera się w nowej karcie
  53. C. Li, J. Zhang, Z. Li, J. Yin, Y. Cui, Y. Liua, G. Yang, Extraction desulfurization of fuels with 'metal ions' based deep eutectic solvents (MDESs), Green Chem. 18 (2016) 3789-3795, https://doi.org/10.1039/C6GC00366D. otwiera się w nowej karcie
  54. US Patent US2050600A, Production and Purification of Diethyl Ether, 1933. otwiera się w nowej karcie
  55. US Patent US3847756A, Recovery of Diethyl Ether from an Olefin Hydration Product Stream by Extractive Distillation with Water, 1972. otwiera się w nowej karcie
  56. J. Yanowitz, M.A. Ratcliff, R.L. McCormick, J.D. Taylor, M.J. Murphy, Compendium of Experimental Cetane Numbers, National Renewable Energy Laboratory, 2017. https://www.nrel.gov/docs/fy17osti/67585.pdf, Accessed date: 14 January 2019. otwiera się w nowej karcie
  57. G. Jeffrey, An Introduction to Hydrogen Bonding, Oxford University Press, 1997.
  58. H.S. Biswal, S. Chakraborty, S. Wategaonkar, Experimental evidence of O-H-S hy- drogen bonding in supersonic jet, J. Chem. Phys. 129 (2008) 184311, https://doi. org/10.1063/1.3012569. otwiera się w nowej karcie
  59. H.S. Biswal, S. Wategaonkar, Sulfur, not too far behind O, N, and C: SH···π hydrogen bond, J. Phys. Chem. A 113 (2009) 12774-12782, https://doi.org/10.1021/ jp907747w. otwiera się w nowej karcie
  60. H.S. Biswal, P.R. Shirhatti, S. Wategaonkar, O-H···O versus O-H···S hydrogen bonding I: experimental and computational studies on the p-cresol···H2O and p- cresol···H2S complexes, J. Phys. Chem. A 113 (2009) 5633-5643, https://doi.org/ 10.1021/jp9009355. otwiera się w nowej karcie
  61. S. Bhattacharyya, A. Bhattacherjee, P.R. Shirhatti, S. Wategaonkar, OH···S hydrogen bonds conform to the acid-base formalism, J. Phys. Chem. A 117 (2013) 8238-8250, https://doi.org/10.1021/jp405414h. otwiera się w nowej karcie
  62. S. Kumar, A. Das, Effect of acceptor heteroatoms on -hydrogen bonding interactions: a study of indolethiophene heterodimer in a supersonic jet, J. Chem. Phys. 137 (2012), 094309. https://doi.org/10.1063/1.4748818. otwiera się w nowej karcie
  63. J.A. Platts, S.T. Howard, B.R.F. Bracke, Directionality of hydrogen bonds to sulfur and oxygen, J. Am. Chem. Soc. 118 (1996) 2726-2733, https://doi.org/10.1021/ ja952871s. otwiera się w nowej karcie
  64. J. Zhu, K. Yu, Y. Zhu, R. Zhu, F. Ye, N. Song, Y. Xu, Physicochemical properties of deep eutectic solvents formed by choline chloride and phenolic compounds at T = (293.15 to 333.15) K: the influence of electronic effect of substitution group, J. Mol. Liq. 232 (2017) 182-187, https://doi.org/10.1016/j.molliq.2017.02.071. otwiera się w nowej karcie
  65. W. Jiang, L. Dong, W. Liu, T. Guo, H. Li, S. Yin, W. Zhu, H. Li, Biodegradable choline- like deep eutectic solvents for extractive desulfurization of fuel, Chem. Eng. Process 115 (2017) 34-38, https://doi.org/10.1016/j.cep.2017.02.004. otwiera się w nowej karcie
Weryfikacja:
Politechnika Gdańska

wyświetlono 136 razy

Publikacje, które mogą cię zainteresować

Meta Tagi