Deep Features Class Activation Map for Thermal Face Detection and Tracking - Publikacja - MOST Wiedzy

Wyszukiwarka

Deep Features Class Activation Map for Thermal Face Detection and Tracking

Abstrakt

Recently, capabilities of many computer vision tasks have significantly improved due to advances in Convolutional Neural Networks. In our research, we demonstrate that it can be also used for face detection from low resolution thermal images, acquired with a portable camera. The physical size of the camera used in our research allows for embedding it in a wearable device or indoor remote monitoring solution for elderly and disabled people. The benefits of the proposed architecture were experimentally verified on the thermal video sequences, acquired in various scenarios to address possible limitations of remote diagnostics: movements of the person performing a diagnose and movements of the examined person. The achieved short processing time (42.05±0.21ms) along with high model accuracy (false positives - 0.43%; true positives for the patient focused on a certain task - 89.2%) clearly indicates that the current state of the art in the area of image classification and face tracking in thermography was significantly outperformed.

Cytuj jako

Pełna treść

pełna treść publikacji nie jest dostępna w portalu

Słowa kluczowe

Informacje szczegółowe

Kategoria:
Aktywność konferencyjna
Typ:
materiały konferencyjne indeksowane w Web of Science
Tytuł wydania:
The 10th International Conference on Human System Interaction
Język:
angielski
Rok wydania:
2017
Opis bibliograficzny:
Kwaśniewska A., Rumiński J., Rad P..: Deep Features Class Activation Map for Thermal Face Detection and Tracking, W: The 10th International Conference on Human System Interaction, 2017, ,.
Weryfikacja:
Politechnika Gdańska

wyświetlono 90 razy

Publikacje, które mogą cię zainteresować

Meta Tagi