Expert system against machine learning approaches as a virtual sensor for ventricular arrhythmia risk level estimation - Publikacja - MOST Wiedzy

Wyszukiwarka

Expert system against machine learning approaches as a virtual sensor for ventricular arrhythmia risk level estimation

Abstrakt

Recent advancements in machine learning have opened new avenues for preventing fatal ventricular arrhythmia by accurately measuring and analyzing QT intervals. This paper presents virtual sensor based on an expert system designed to prevent the risk of fatal ventricular arrhythmias associated with QT-prolonging treatments. The expert system categorizes patients into three risk levels based on their electrocardiogram-derived QT intervals and other clinical data, such as age or sex, facilitating informed decision-making and reducing the workload for healthcare professionals. Expert systems, known for their effectiveness in classifications with limited data, are particularly advantageous in this context. They not only achieve better standard metrics but also offer interpretability that other machine learning models lack. The proposed system’s performance has been rigorously compared against various machine learning algorithms, demonstrating superior efficiency as evidenced by confusion matrices, standard classification metrics, and receiver operation point curves. With an accuracy of 96.5%, the expert system proves to be the best option among the models evaluated, optimizing patient care and treatment outcomes by enabling more frequent and precise electrocardiogram assessments.

Cytowania

  • 0

    CrossRef

  • 0

    Web of Science

  • 0

    Scopus

Autorzy (9)

Cytuj jako

Pełna treść

pełna treść publikacji nie jest dostępna w portalu

Słowa kluczowe

Informacje szczegółowe

Kategoria:
Publikacja w czasopiśmie
Typ:
artykuły w czasopismach
Opublikowano w:
Biomedical Signal Processing and Control nr 102,
ISSN: 1746-8094
Język:
angielski
Rok wydania:
2025
Opis bibliograficzny:
García-Galán S., Cabrera-Rodriguez J. A., Maldonado-Carrascosa F. J., Ruiz-Reyes N., Szczerska M., Vera-Candeas P., Gonzalez-Martinez F. D., Canadas-Quesada F. J., Cruz-Lendinez A. J.: Expert system against machine learning approaches as a virtual sensor for ventricular arrhythmia risk level estimation// Biomedical Signal Processing and Control -Vol. 102, (2025), s.107255-
DOI:
Cyfrowy identyfikator dokumentu elektronicznego (otwiera się w nowej karcie) 10.1016/j.bspc.2024.107255
Źródła finansowania:
  • Publikacja bezkosztowa
Weryfikacja:
Politechnika Gdańska

wyświetlono 14 razy

Publikacje, które mogą cię zainteresować

Meta Tagi