Expert system against machine learning approaches as a virtual sensor for ventricular arrhythmia risk level estimation
Abstrakt
Recent advancements in machine learning have opened new avenues for preventing fatal ventricular arrhythmia by accurately measuring and analyzing QT intervals. This paper presents virtual sensor based on an expert system designed to prevent the risk of fatal ventricular arrhythmias associated with QT-prolonging treatments. The expert system categorizes patients into three risk levels based on their electrocardiogram-derived QT intervals and other clinical data, such as age or sex, facilitating informed decision-making and reducing the workload for healthcare professionals. Expert systems, known for their effectiveness in classifications with limited data, are particularly advantageous in this context. They not only achieve better standard metrics but also offer interpretability that other machine learning models lack. The proposed system’s performance has been rigorously compared against various machine learning algorithms, demonstrating superior efficiency as evidenced by confusion matrices, standard classification metrics, and receiver operation point curves. With an accuracy of 96.5%, the expert system proves to be the best option among the models evaluated, optimizing patient care and treatment outcomes by enabling more frequent and precise electrocardiogram assessments.
Cytowania
-
0
CrossRef
-
0
Web of Science
-
0
Scopus
Autorzy (9)
Cytuj jako
Pełna treść
pełna treść publikacji nie jest dostępna w portalu
Słowa kluczowe
Informacje szczegółowe
- Kategoria:
- Publikacja w czasopiśmie
- Typ:
- artykuły w czasopismach
- Opublikowano w:
-
Biomedical Signal Processing and Control
nr 102,
ISSN: 1746-8094 - Język:
- angielski
- Rok wydania:
- 2025
- Opis bibliograficzny:
- García-Galán S., Cabrera-Rodriguez J. A., Maldonado-Carrascosa F. J., Ruiz-Reyes N., Szczerska M., Vera-Candeas P., Gonzalez-Martinez F. D., Canadas-Quesada F. J., Cruz-Lendinez A. J.: Expert system against machine learning approaches as a virtual sensor for ventricular arrhythmia risk level estimation// Biomedical Signal Processing and Control -Vol. 102, (2025), s.107255-
- DOI:
- Cyfrowy identyfikator dokumentu elektronicznego (otwiera się w nowej karcie) 10.1016/j.bspc.2024.107255
- Źródła finansowania:
-
- Publikacja bezkosztowa
- Weryfikacja:
- Politechnika Gdańska
wyświetlono 14 razy
Publikacje, które mogą cię zainteresować
Data governance: Organizing data for trustworthy Artificial Intelligence
- M. Janssen,
- P. Brous,
- E. Estevez
- + 2 autorów
Potential of Explainable Artificial Intelligence in Advancing Renewable Energy: Challenges and Prospects
- V. N. N. Nhanh Van,
- W. Tarełko,
- S. Prabhakar
- + 5 autorów