Fish gelatin films containing aqueous extracts from phenolic-rich fruit pomace - Publikacja - MOST Wiedzy

Wyszukiwarka

Fish gelatin films containing aqueous extracts from phenolic-rich fruit pomace

Abstrakt

The aim of the work was to study the feasibility of using aqueous extracts from rowanberry, blue-berried honeysuckle, and chokeberry pomace for the formulation of fish gelatin films with antioxidant and antimicrobial activity as well as improved mechanical and water barrier properties. The predominant phenolic components in rowanberry and chokeberry extracts were hydroxycinnamates, and in blue-berried honeysuckle extract antho cyanins. Although the gelatin film itself showed antioxidative activity, addition of blue-berried honeysuckle extract increased it 3-fold. Unlike the films containing 1.2 mL of extract, the films with increased extract volume possessed strong antimicrobial properties against E. coli, P. fluorescens, S. aureus, L. innocua. Films plasticized with glycerol at 15 and 17.5% did not increase the mechanical strength in the presence of all extracts tested, but at 20%, a positive effect of each extract on mechanical strength was observed. None of the extracts affected the water barrier properties of the films.

Cytowania

  • 4 3

    CrossRef

  • 0

    Web of Science

  • 4 6

    Scopus

Cytuj jako

Pełna treść

pobierz publikację
pobrano 194 razy
Wersja publikacji
Accepted albo Published Version
Licencja
Creative Commons: CC-BY-NC-ND otwiera się w nowej karcie

Słowa kluczowe

Informacje szczegółowe

Kategoria:
Publikacja w czasopiśmie
Typ:
artykuły w czasopismach
Opublikowano w:
LWT-FOOD SCIENCE AND TECHNOLOGY nr 117, strony 1 - 9,
ISSN: 0023-6438
Język:
angielski
Rok wydania:
2020
Opis bibliograficzny:
Staroszczyk H., Kusznierewicz B., Malinowska-Pańczyk E., Sinkiewicz I., Gottfried K., Kołodziejska I.: Fish gelatin films containing aqueous extracts from phenolic-rich fruit pomace// LWT-FOOD SCIENCE AND TECHNOLOGY -Vol. 117, (2020), s.1-9
DOI:
Cyfrowy identyfikator dokumentu elektronicznego (otwiera się w nowej karcie) 10.1016/j.lwt.2019.108613
Bibliografia: test
  1. Alfaro, A. T., Balbinot, E., Weber, C. I., Tonial, I. B., & Machado-Lunkes, A. (2015). Fish gelatin: Characteristics, functional properties, applications and future potentials. Food Engineering Reviews, 7(1), 33 44. https://doi.org/10.1007/s12393-014-9096-5. otwiera się w nowej karcie
  2. AOAC (1990). Ofccial methods of analysis. Virginia: Association of Ofccial Analytical Chemists. otwiera się w nowej karcie
  3. ASTM (1995). Standard test methods for water vapour transmission of material. E 96-95. Philadelphia, PA: American Society for Testing and Materials. Annual book of ASTM 1995.
  4. ASTM (2001). Standard test method for tensile properties of thin plastic sheeting. D 882-00. Philadelphia, PA: American Society for Testing and Materials. Annual book of ASTM 2001. otwiera się w nowej karcie
  5. Boeing, J. S., Barizão, É., de Silva, B. C., Montanher, P. F., de Cinque Almeida, V., & Visen- tainer, J. V. (2014). Evaluation of solvent effect on the extraction of phenolic com- pounds and antioxidant capacities from the berries: Application of principal compo- nent analysis. Chemistry Central Journal, 8(1), 48. https://doi.org/10.1186/s13065- 014-0048-1. otwiera się w nowej karcie
  6. Burdulis, D., Sarkinas, A., Jasutienè, I., Stackivicenè, E., Nikolajevas, L., & Janulis, V. (2009). Comparative study of anthocyanin composition, antimicrobial and antioxidant activity in bilberry (Vaccinium myrtillus L.) and blueberry (Vaccinium corymbosum L.) fruits. Acta Poloniae Pharmaceutica Drug Research, 66, 399 408.
  7. Cerruti, P., Santagata, G., Gomez d Ayala, G., Ambrogi, V., Carfagna, C., & Malincon- ico, M., et al. (2011). Effect of natural polyphenolic extract on thr properties of a biodegradable starch-based polymer. Polymer Degradation and Stabilitaty, 96, 839 846. otwiera się w nowej karcie
  8. Cisowska, A., Wojnicz, D., & Hendrich, A. B. (2011). Anthocyanins as antimicrobial agents of natural plant origin. Natural Product Communications, 6, 149 156. otwiera się w nowej karcie
  9. Corrales, M., Han, J. H., & Tauscher, G. (2009). Antimicrobial properties of grape seed extracts and their effectiveness after incorporation into pea starch clms. International Journal of Food Science and Technology, 44, 425 433. otwiera się w nowej karcie
  10. De Ancos, B., Colina-Coca, C., González-Peña, D., & Sánchez-Moreno, C. (2015). Bioac- tive compounds from vegetable and fruit by-products. In Gupta, V. K., & Tuohy, M. G. (Eds.), Biotechnology of bioactive compounds: Sources and applications (pp. 3 36). Chichester, UK: John Wiley & Sons. otwiera się w nowej karcie
  11. De Dicastillo, C. L., Rodríguez, F., Guarda, A., & Galotto, M. J. (2016). Antioxidant clms based on cross-linked methyl cellulose and native Chilean berry for food packag- ing applications. Carbohydrate Polymers, 136, 1052 1060. https://doi.org/10.1016/ j.carbpol.2015.10.013. otwiera się w nowej karcie
  12. Deng, Q., & Zhao, Y. (2011). Physicochemical, nutritional, and antimicrobial properties of wine grape (cv. Mertol) pomace extract-based clms. Journal of Food Science, 76, E309 E317. https://doi.org/10.1111/j.1750-3841.2011.02090. otwiera się w nowej karcie
  13. Dewick, P. M. (2002). Medicinal natural products (2nd ed., pp. 137 186). Chichester, UK: John Wiley & Sons.
  14. Ferreira, A. S., Nunes, C., Castro, A., Ferreira, P., & Coimbra, M. A. (2014). Induence of grape pomace extract incorporation on chitosan clms properties. Carbohydrate Poly- mers, 113, 490 499. https://doi.org/10.1016/j.carbpol.2014.07.032. otwiera się w nowej karcie
  15. Gómez-Estaca, J., Bravo, L., Gómez-Guillén, M. C., Alemán, A., & Montero, P. (2009). Antioxidant properties of tuna-skin and bovine gelatin clms induced by the addition of origanum and rosemary extracts. Food Chemistry, 112, 18 25. https://doi.org/10. 1016/j.foodchem.2008.05.034. otwiera się w nowej karcie
  16. Gómez-Estaca, J., Giménez, B., Montero, P., & Gómez-Guillén, M. C. (2009). Incorpora- tion of antioxidant borage extract into edible clms based on skin gelatin or a commer- cial csh gelatin. Journal of Food Engineering, 92, 78 85. https://doi.org/10.1016/j. jfoodeng.2008.10.024. otwiera się w nowej karcie
  17. Gómez-Estaca, J., Montero, P., Fernández-Martín, F., Alemán, A., & Gómez-Guillén, M. C. (2009). Physical and chemical properties of tuna-skin and bovine-hide gelatin clms with added aqueous oregano and rosemary extracts. Food Hydrocolloids, 23, 1334 1341. https://doi.org/10.1016/j.foodhyd.2008.09.013. otwiera się w nowej karcie
  18. Gómez-Guillén, C., Ihl, M., Bifani, V., Silva, A., & Montero, P. (2007). Edible clms made from Tuna-csh gelatin with antioxidant extracts of two different murta ecotypes leaves (Ugni molinae Turcz). Food Hydrocolloids, 21, 1130 1143. https://doi.org/10.1016/j. foodhyd.2006.08.006. otwiera się w nowej karcie
  19. Hong, Y.-H., Lim, G. O., & Song, K. B. (2009). Physical properties of Gelidium corneum gelatin blend clms containing grapefruit seed extract or green tea extract and its appli- cation in the packaging of pork loins. Journal of Food Science, 74(1), C6 C10. https: //doi.org/10.1111/j.1750-3841.2008.00987.x. otwiera się w nowej karcie
  20. H. Staroszczyk et al. LWT -Food Science and Technology xxx (xxxx) xxx-xxx
  21. Hoque, M. S., Benjakul, S., & Prodpran, T. (2011). Properties of clm from cuttlecsh (Sepia pharaonis) skin gelatin incorporated with cinnamon, clove and star anise extracts. otwiera się w nowej karcie
  22. Food Hydrocolloids, 25, 1085 1097. https://doi.org/10.1016/j.foodhyd.2010.10.005. otwiera się w nowej karcie
  23. Kim, K. M., Lee, B.-Y., Kim, Y. T., Choi, S.-G. C., Lee, J., & Cho, S. Y., et al. (2006). Devel- opment of antimicrobial edible clm incorporated with green tea extract. Food Science and Biotechnology, 15, 478 481.
  24. Ko, S., Janes, M. E., Hettiarachchy, N. S., & Johnson, M. G. (2001). Physical and chemical properties of edible clms containing nisin and their action against Listeria monocyto- genes. Journal of Food Science, 66, 1006 1011. https://doi.org/10.1111/j.1365-2621. 2001.tb08226.x. otwiera się w nowej karcie
  25. Komes, D., & Bušić, A. (2014). Antioxidants in coffee. In Preedy, V. (Ed.), Processing and impact on antioxidants in beverages (pp. 25 32). Waltham, MA, USA: Elsevier Inc. otwiera się w nowej karcie
  26. Kołodziejska, I., Skierka, E., Sadowska, M., Kołodziejski, W., & Nieciowska, C. (2008). Ef- fect of extracting time and temperature on yield of gelatin from different csh offal. Food Chemistry, 107, 700 706. https://doi.org/10.1016/j.foodchem.2007.08.071. otwiera się w nowej karcie
  27. Krochta, J. M., & de Mulder-Johnston, C. (1997). Edible and biodegradable polymer clms: Challenges and opportunities. Food Technology, 51(2), 61 74. otwiera się w nowej karcie
  28. Kusznierewicz, B., Piasek, A., Bartoszek, A., & Namiesnik, J. (2011). The optimisation of analytical parameters for routine procling of antioxidants in complex mixtures by HPLC coupled post-column derivatisation. Phytochemical Analysis, 22(5), 392 402. https://doi.org/10.1002/pca.1294. otwiera się w nowej karcie
  29. Kusznierewicz, B., Piekarska, A., Mrugalska, B., Konieczka, P., Namieśnik, J., & Bartoszek, A. (2012). Phenolic composition and antioxidant properties of polish blue-berried honeysuckle genotypes by HPLC-DAD-MS, HPLC postcolumn derivatization with ABTS or FC, and TLC with DPPH visualization. Journal of Agricultural and Food Chemistry, 60, 1755 1763. https://doi.org/10.1021/jf2039839. otwiera się w nowej karcie
  30. Kylli, P., Nohynek, L., Puupponen-Pimiä, R., Westerlund-Wikström, B., McDougall, G., & Stewart, D., et al. (2010). Rowanberry phenolics: Compositional analysis and bioactiv- ities. Journal of Agricultural and Food Chemistry, 58, 11985 11992. https://doi.org/ 10.1021/jf102739v. otwiera się w nowej karcie
  31. Li, J.-H., Miao, J., Wu, J.-L., Chen, S.-F., & Hang, Q.-Q. (2014). Preparation and charac- terization of active gelatin-based clms incorporated with natural antioxidants. Food Hydrocolloids, 37, 166 173. https://doi.org/10.1016/j.foodhyd.2013.10.015. otwiera się w nowej karcie
  32. Milenković Anđelković, A., Radovanović, B., Anđelković, M., Radovanović, A., Nikolić, V., & Ranđelović, V. (2015). The anthocyanin content and bioactivity of cornelian cherry (cornus mas) and wild blackberry (rubus fruticosus): Fruit extracts from the vlasina region. Advanced Technologies, 4, 26 31. doi:10.5937/savteh1502026M. otwiera się w nowej karcie
  33. Mills, C. E., Oruna-Concha, M. J., Mottram, D. S., Gibson, G. R., & Spencer, J. P. E. (2013). The effect of processing on chlorogenic acid content of commercially available coffee. Food Chemistry, 141, 3335 3340. https://doi.org/10.1016/j.foodchem.2013.06.014. otwiera się w nowej karcie
  34. Nallamuthu, I., Devi, A., & Khanum, F. (2015). Chlorogenic acid loaded chitosan nanopar- ticles with sustained release property, retained antioxidant activity and enhanced bioavailability. Asian Journal of Pharmaceutical Sciences, 10(3), 203 211. https:// doi.org/10.1016/j.ajps.2014.09.005. otwiera się w nowej karcie
  35. Norajit, K., Kim, K. M., & Ryu, G. H. (2010). Comparative studies on the characterization and antioxidant properties of biodegradable alginate clms containing ginseng extract. Journal of Food Engineering, 98, 377 384. https://doi.org/10.1016/j.jfoodeng.2010. 01.015. otwiera się w nowej karcie
  36. Oszmiański, J., & Lachowicz, S. (2016). Effect of the production of dried fruits and juice from chokeberry (Aronia melanocarpa L.) on the content and antioxidative activity of bioactive compounds. Molecules, 21, 1098. http://doi.org/10.3390/ molecules21081098. otwiera się w nowej karcie
  37. Puuppone-Pimiä, P., Nohynek, L., Alakomi, H.-L., & Oksman-Caldentey, K.-M. (2005). Bioactive berry compounds novel tools against human pathogens. Applied Microbi- ology and Biotechnology, 67, 8 18. https://doi.org/10.1007/s00253-004-1817-x. otwiera się w nowej karcie
  38. Puuppone-Pimiä, P., Nohynek, L., Meier, C., Kähkönen, M., Heinonen, M., & Hopia, A., et al. (2001). Antimicrobial properties of phenolic compounds from berries. Journal of Applied Microbiology, 90, 494 507. https://doi.org/10.1046/j.1365-2672.2001. 01271.x. otwiera się w nowej karcie
  39. Rattaya, S., Benjakul, S., & Prodpran, T. (2009). Properties of csh gelatin clm incorporated with seaweed extract. Journal of Food Engineering, 95, 151 157. https://doi.org/10. 1016/j.jfoodeng.2009.04.022. otwiera się w nowej karcie
  40. Siripatrawan, U., & Harte, B. R. (2010). Physical properties and antioxidant activity of an active clm from chitosan incorporated with green tea extract. Food Hydrocolloids, 24, 770 775. https://doi.org/10.1016/j.foodhyd.2010.04.003. otwiera się w nowej karcie
  41. Sivarooban, T., Hettiarachchy, N. S., & Johnson, M. G. (2008). Physical and antimicrobial properties of grape seed extract, nisin, and EDTA incorporated soy protein clms. Food Research International, 41, 781 785. https://doi.org/10.1016/j.foodres.2008.04.007. otwiera się w nowej karcie
  42. Spigno, G., & De Faveri, D. M. (2007). Antioxidants from grape stalks and marc: Induence of extraction procedure on yield, purity and antioxidant power of the extracts. Journal of Food Engineering, 78, 793 801. https://doi.org/10.1016/j.jfoodeng.2005.11.020. otwiera się w nowej karcie
  43. Spigno, G., Tramelli, L., & De Faveri, D. M. (2007). Effects of extraction time, tempera- ture and solvent on concentration and antioxidant activity of grape marc phenolics. Journal of Food Engineering, 81, 200 208. https://doi.org/10.1016/j.jfoodeng.2006. 10.021. otwiera się w nowej karcie
  44. Staroszczyk, H., Julia Pieluchowska, J., Sztuka, K., Stangret, J., & Kołodziejska, I. (2012). Molecular and structural characteristics of cod gelatin clms modiced with EDC and TGase. Food Chemistry, 130, 335 343. https://doi.org/10.1016/j.foodchem.2011.07. 047. otwiera się w nowej karcie
  45. Struck, S., Plaza, M., Turner, C., & Rohm, H. (2016). Berry pomace -a review of processing and chemical analysis of its polyphenols. International Journal of Food Science and Technology, 51, 1305 1318. https://doi.org/10.1111/ijfs.13112. otwiera się w nowej karcie
  46. Tongnuanchan, P., Benjakul, S., & Prodpran, T. (2012). Properties and antioxidant activ- ity of csh gelatin clm incorporated with citrus essential oils. Food Chemistry, 134, 1571 1579. https://doi.org/10.1016/j.foodchem.2012.03.094. otwiera się w nowej karcie
  47. Wang, Q., Tian, F., Feng, Z., Fan, X., Pan, Z., & Zhou, J. (2015). Antioxidant activity and physicochemical properties of chitosan clms incorporated with Lycium barbarum fruit extract for active food packaging. International Journal of Food Science and Technol- ogy, 50, 458 464. https://doi.org/10.1111/ijfs.12623. otwiera się w nowej karcie
  48. Wu, J., Chen, S., Ge, S., Miao, J., Li, J., & Zhang, Q. (2013). Preparation, properties and an- tioxidant activity of an active clm from silver carp (Hypophthalmichthys molitrix) skin gelatin incorporated with green tea extract. Food Hydrocolloids, 32, 42 51. https:// doi.org/10.1016/j.foodhyd.2012.11.029. otwiera się w nowej karcie
Weryfikacja:
Politechnika Gdańska

wyświetlono 233 razy

Publikacje, które mogą cię zainteresować

Meta Tagi