Gender approaches to evolutionary multi-objective optimization using pre-selection of criteria - Publikacja - MOST Wiedzy

Wyszukiwarka

Gender approaches to evolutionary multi-objective optimization using pre-selection of criteria

Abstrakt

A novel idea to perform evolutionary computations (ECs) for solving highly dimensional multi-objective optimization (MOO) problems is proposed. Following the general idea of evolution, it is proposed that information about gender is used to distinguish between various groups of objectives and identify the (aggregate) nature of optimality of individuals (solutions). This identification is drawn out of the fitness of individuals and applied during parental crossover in the processes of evolutionary multi-objective optimization (EMOO). The article introduces the principles of the genetic-gender approach (GGA) and virtual gender approach (VGA), which are not just evolutionary techniques, but constitute a completely new rule (philosophy) for use in solving MOO tasks. The proposed approaches are validated against principal representatives of the EMOO algorithms of the state of the art in solving benchmark problems in the light of recognized EC performance criteria. The research shows the superiority of the gender approach in terms of effectiveness, reliability, transparency, intelligibility and MOO problem simplification, resulting in the great usefulness and practicability of GGA and VGA. Moreover, an important feature of GGA and VGA is that they alleviate the ‘curse’ of dimensionality typical of many engineering designs.

Cytowania

  • 6

    CrossRef

  • 0

    Web of Science

  • 8

    Scopus

Cytuj jako

Pełna treść

pobierz publikację
pobrano 103 razy
Wersja publikacji
Accepted albo Published Version
Licencja
Copyright (2017 Informa UK Limited, trading as Taylor & Francis Group)

Słowa kluczowe

Informacje szczegółowe

Kategoria:
Publikacja w czasopiśmie
Typ:
artykuł w czasopiśmie wyróżnionym w JCR
Opublikowano w:
ENGINEERING OPTIMIZATION nr 50, wydanie 1, strony 120 - 144,
ISSN: 0305-215X
ISSN:
1029-0273
Język:
angielski
Rok wydania:
2018
Opis bibliograficzny:
Kowalczuk Z., Białaszewski T.: Gender approaches to evolutionary multi-objective optimization using pre-selection of criteria// ENGINEERING OPTIMIZATION. -Vol. 50, iss. 1 (2018), s.120-144
DOI:
Cyfrowy identyfikator dokumentu elektronicznego (otwiera się w nowej karcie) 10.1080/0305215x.2017.1305374
Weryfikacja:
Politechnika Gdańska

wyświetlono 178 razy

Publikacje, które mogą cię zainteresować

Meta Tagi