Highly Active TiO2 Microspheres Formation in the Presence of Ethylammonium Nitrate Ionic Liquid - Publikacja - MOST Wiedzy

Wyszukiwarka

Highly Active TiO2 Microspheres Formation in the Presence of Ethylammonium Nitrate Ionic Liquid

Abstrakt

Spherical microparticles of TiO2 were synthesized by the ionic liquid-assisted solvothermal method at different reaction times (3, 6, 12, and 24 h). The properties of the prepared photocatalysts were investigated by means of UV-VIS diffuse-reflectance spectroscopy (DRS), Brunauer–Emmett–Teller (BET) surface area measurements, scanning electron microscopy (SEM), X-ray diffraction analysis (XRD), and X-ray photoelectron spectroscopy (XPS). The results indicated that the efficiency of the phenol degradation was related to the time of the solvothermal synthesis, as determined for the TiO2_EAN(1:1)_24h sample. The microparticles of TiO2_EAN(1:1)_3h that formed during only 3 h of the synthesis time revealed a really high photoactivity under visible irradiation (75%). This value increased to 80% and 82% after 12 h and 24 h, respectively. The photoactivity increase was accompanied by the increase of the specific surface area, thus the poresize as well as the ability to absorb UV-VIS irradiation. The high efficiency of the phenol degradation of the ionic liquid (IL)–TiO2 photocatalysts was ascribed to the interaction between the surface of the TiO2 and ionic liquid components (carbon and nitrogen).

Cytowania

  • 1 0

    CrossRef

  • 0

    Web of Science

  • 1 1

    Scopus

Autorzy (10)

Cytuj jako

Pełna treść

pobierz publikację
pobrano 36 razy
Wersja publikacji
Accepted albo Published Version
Licencja
Creative Commons: CC-BY otwiera się w nowej karcie

Słowa kluczowe

Informacje szczegółowe

Kategoria:
Publikacja w czasopiśmie
Typ:
artykuł w czasopiśmie wyróżnionym w JCR
Opublikowano w:
Catalysts nr 8, wydanie 7, strony 1 - 17,
ISSN: 2073-4344
Język:
angielski
Rok wydania:
2018
Opis bibliograficzny:
Gołąbiewska A., Micaelaa C., Paszkiewicz-Gawron M., Lisowski W., Raczuk E., Klimczuk T., Polkowska Ż., Grabowska E., Zaleska-Medynska A., Łuczak J.: Highly Active TiO2 Microspheres Formation in the Presence of Ethylammonium Nitrate Ionic Liquid// Catalysts. -Vol. 8, iss. 7 (2018), s.1-17
DOI:
Cyfrowy identyfikator dokumentu elektronicznego (otwiera się w nowej karcie) 10.3390/catal8070279
Bibliografia: test
  1. Hoffmann, M.R.; Martin, S.T.; Choi, W.; Bahnemann, D.W. Environmental applications of semiconductor photocatalysis. Chem. Rev. 1995, 95, 69-96. [CrossRef] otwiera się w nowej karcie
  2. Fujishima, A.; Rao, T.N.; Tryk, D.A. Titanium dioxide photocatalysis. J. Photochem. Photobiol. C Photochem. Rev. 2000, 1, 1-21. [CrossRef] otwiera się w nowej karcie
  3. Pelaez, M.; Nolan, N.T.; Pillai, S.C.; Seery, M.K.; Falaras, P.; Kontos, A.G.; Dunlop, P.S.M.; Hamilton, J.W.J.; Byrne, J.A.; O'Shea, K.; et al. A review on the visible light active titanium dioxide photocatalysts for environmental applications. Appl. Catal. B Environ. 2012, 125, 331-349. [CrossRef] otwiera się w nowej karcie
  4. Fox, M.A.; Dulay, M.T. Heterogeneous photocatalysis. Chem. Rev. 1993, 93, 341-357. [CrossRef] otwiera się w nowej karcie
  5. Thompson, T.L.; Yates, J.T. Surface science studies of the photoactivation of TiO 2 new photochemical processes. Chem. Rev. 2006, 106, 4428-4453. [CrossRef] [PubMed] otwiera się w nowej karcie
  6. Zhang, B.; Xue, Z.; Xue, Y.; Huang, Z.; Li, Z.; Hao, J. Ionic liquid-assisted synthesis of morphology-controlled TiO 2 particles with efficient photocatalytic activity. RSC Adv. 2015, 5, 81108-81114. [CrossRef] otwiera się w nowej karcie
  7. Ramanathan, R.; Bansal, V. Ionic liquid mediated synthesis of nitrogen, carbon and fluorine-codoped rutile TiO 2 nanorods for improved UV and visible light photocatalysis. RSC Adv. 2015, 5, 1424-1429. [CrossRef] otwiera się w nowej karcie
  8. Xu, H.; Ouyang, S.; Liu, L.; Reunchan, P.; Umezawa, N.; Ye, J. Recent advances in TiO 2 -based photocatalysis. J. Mater. Chem. A 2014, 2, 12642-12661. [CrossRef] otwiera się w nowej karcie
  9. Zhang, F.; Sun, D.; Yu, C.; Yin, Y.; Dai, H.; Shao, G. A sol-gel route to synthesize SiO 2 /TiO 2 well-ordered nanocrystalline mesoporous photocatalysts through ionic liquid control. New J. Chem. 2015, 39, 3065-3070. [CrossRef] otwiera się w nowej karcie
  10. Alammar, T.; Noei, H.; Wang, Y.; Mudring, A.-V. Mild yet phase-selective preparation of TiO 2 nanoparticles from ionic liquids-A critical study. Nanoscale 2013, 5, 8045-8055. [CrossRef] [PubMed] otwiera się w nowej karcie
  11. Ahmed, E.; Breternitz, J.; Groh, M.F.; Ruck, M. Ionic liquids as crystallisation media for inorganic materials. CrystEngComm 2012, 14, 4874-4885. [CrossRef] otwiera się w nowej karcie
  12. Bhattacharyya, K.; Majeed, J.; Dey, K.K.; Ayyub, P.; Tyagi, A.K.; Bharadwaj, S.R. Effect of Mo-Incorporation in the TiO 2 Lattice: A mechanistic basis for photocatalytic dye degradation. J. Phys. Chem. C 2014, 118, 15946-15962. [CrossRef] otwiera się w nowej karcie
  13. Yu, S.; Liu, B.; Wang, Q.; Gao, Y.; Shi, Y.; Feng, X.; An, X.; Liu, L.; Zhang, J. Ionic Liquid Assisted Chemical Strategy to TiO 2 Hollow Nanocube Assemblies with Surface-Fluorination and Nitridation and High Energy Crystal Facet Exposure for Enhanced Photocatalysis. ACS Appl. Mater. Interfaces 2014, 6, 10283-10295. [CrossRef] [PubMed] otwiera się w nowej karcie
  14. Gindri, I.M.; Frizzo, C.P.; Bender, C.R.; Tier, A.Z.; Martins, M.A.P.; Villetti, M.A.; Machado, G.; Rodriguez, L.C.; Rodrigues, D.C. Preparation of TiO 2 nanoparticles coated with ionic liquids: A supramolecular approach. ACS Appl. Mater. Interfaces 2014, 6, 11536-11543. [CrossRef] [PubMed] otwiera się w nowej karcie
  15. Łuczak, J.; Paszkiewicz, M.; Krukowska, A.; Malankowska, A.; Zaleska-Medynska, A. Ionic liquids for nano-and microstructures preparation. Part 1: Properties and multifunctional role. Adv. Colloid Interface Sci. 2016, 230, 13-28. [CrossRef] [PubMed] otwiera się w nowej karcie
  16. Paszkiewicz, M.; Łuczak, J.; Lisowski, W.; Patyk, P.; Zaleska-Medynska, A. The ILs-assisted solvothermal synthesis of TiO 2 spheres: The effect of ionic liquids on morphology and photoactivity of TiO 2 . Appl. Catal. B Environ. 2016, 184, 223-237. [CrossRef] otwiera się w nowej karcie
  17. Kaur, N.; Singh, V. Current status and future challenges in ionic liquids, functionalized ionic liquids and deep eutectic solvent-mediated synthesis of nanostructured TiO 2 : A review. New J. Chem. 2017, 41, 2844-2868. [CrossRef] otwiera się w nowej karcie
  18. Wender, H.; Feil, A.F.; Diaz, L.B.; Ribeiro, C.S.; Machado, G.J.; Migowski, P.; Weibel, D.E.; Dupont, J.; Teixeira, S.R. Self-organized TiO 2 nanotube arrays: Synthesis by anodization in an ionic liquid and assessment of photocatalytic properties. ACS Appl. Mater. Interfaces 2011, 3, 1359-1365. [CrossRef] [PubMed] otwiera się w nowej karcie
  19. Qi, L.; Yu, J.; Jaroniec, M. Enhanced and suppressed effects of ionic liquid on the photocatalytic activity of TiO 2 . Adsorption 2013, 19, 557-561. [CrossRef] otwiera się w nowej karcie
  20. Marr, P.C.; Marr, A.C. Ionic liquid gel materials: Applications in green and sustainable chemistry. Green Chem. 2016, 18, 105-128. [CrossRef] otwiera się w nowej karcie
  21. Chang, S.-M.; Lee, C.-Y. A salt-assisted approach for the pore-size-tailoring of the ionic-liquid-templated TiO 2 photocatalysts exhibiting high activity. Appl. Catal. B Environ. 2013, 132, 219-228. [CrossRef] otwiera się w nowej karcie
  22. Lopes, C.W.; Finger, P.H.; Mignoni, M.L.; Emmerich, D.J.; Mendes, F.M.T.; Amorim, S.; Pergher, S.B.C. TiO 2 -TON zeolite synthesis using an ionic liquid as a structure-directing agent. Microporous Mesoporous Mater. 2015, 213, 78-84. [CrossRef] otwiera się w nowej karcie
  23. Yu, N.; Gong, L.; Song, H.; Liu, Y.; Yin, D. Ionic liquid of [Bmim] + Cl − for the preparation of hierarchical nanostructured rutile titania. J. Solid State Chem. 2007, 180, 799-803. [CrossRef] otwiera się w nowej karcie
  24. Gołąbiewska, A.; Paszkiewicz-Gawron, M.; Sadzińska, A.; Lisowski, W.; Grabowska, E.; Zaleska-Medynska, A.; Łuczak, J. Fabrication and photoactivity of ionic liquid-TiO 2 structures for efficient visible-light-induced photocatalytic decomposition of organic pollutants in aqueous phase. Beilstein J. Nanotechnol. 2018, 9, 580-590. [CrossRef] [PubMed] otwiera się w nowej karcie
  25. Han, C.-C.; Ho, S.-Y.; Lin, Y.-P.; Lai, Y.-C.; Liang, W.-C.; Chen-Yang, Y.-W. Effect of π-π stacking of water miscible ionic liquid template with different cation chain length and content on morphology of mesoporous TiO 2 prepared via sol-gel method and the applications. Microporous Mesoporous Mater. 2010, 131, 217-223. [CrossRef] otwiera się w nowej karcie
  26. Chen, Y.; Li, W.; Wang, J.; Gan, Y.; Liu, L.; Ju, M. Microwave-assisted ionic liquid synthesis of Ti 3+ self-doped TiO 2 hollow nanocrystals with enhanced visible-light photoactivity. Appl. Catal. B Environ. 2016, 191, 94-105. [CrossRef] otwiera się w nowej karcie
  27. Łuczak, J.; Paszkiewicz-Gawron, M.; Długokęcka, M.; Lisowski, W.; Grabowska, E.; Makurat, S.; Rak, J.; Zaleska-Medynska, A. Visible light photocatalytic activity of ionic liquid-TiO 2 spheres: Effect of the ionic liquid's anion structure. ChemCatChem 2017, 9, 4377-4388. [CrossRef] otwiera się w nowej karcie
  28. Kim, S.; Ko, K.C.; Lee, J.Y.; Illas, F. Single oxygen vacancies of (TiO 2 ) 35 as a prototype reduced nanoparticle: Implication for photocatalytic activity. Phys. Chem. Chem. Phys. 2016, 18, 23755-23762. [CrossRef] [PubMed] otwiera się w nowej karcie
  29. Jiang, Y.; Zhu, Y.J.; Cheng, G.F. Synthesis of Bi 2 Se 3 Nanosheets by Microwave Heating Using an Ionic Liquid. Cryst. Growth Des. 2006, 6, 2174-2176. [CrossRef] otwiera się w nowej karcie
  30. Kaper, H.; Sallard, S.B.; Djerdj, I.; Antonietti, M.; Smarsly, B.M. Toward a Low-Temperature Sol−Gel Synthesis of TiO 2 (B) Using Mixtures of Surfactants and Ionic Liquids. Chem. Mater. 2010, 22, 3502-3510. [CrossRef] otwiera się w nowej karcie
  31. Verma, Y.L.; Tripathi, A.K.; Singh, V.K.; Balo, L.; Gupta, H.; Singh, S.K.; Singh, R.K. Preparation and properties of titania based ionogels synthesized using ionic liquid 1-ethyl-3-methyl imidazolium thiocyanate. Mater. Sci. Eng. B 2017, 220, 37-43. [CrossRef] otwiera się w nowej karcie
  32. Jing, L.; Wang, M.; Li, X.; Xiao, R.; Zhao, Y.; Zhang, Y.; Yan, Y.-M.; Wu, Q.; Sun, K. Covalently functionalized TiO 2 with ionic liquid: A high-performance catalyst for photoelectrochemical water oxidation. Appl. Catal. B Environ. 2015, 166, 270-276. [CrossRef] otwiera się w nowej karcie
  33. Ravishankar, T.N.; Nagaraju, G.; Dupont, J. Photocatalytic activity of Li-doped TiO 2 nanoparticles: Synthesis via ionic liquid-assisted hydrothermal route. Mater. Res. Bull. 2016, 78, 103-111. [CrossRef] otwiera się w nowej karcie
  34. Liu, H.; Liang, Y.; Hu, H.; Wang, M. Hydrothermal synthesis of mesostructured nanocrystalline TiO 2 in an ionic liquid-water mixture and its photocatalytic performance. Solid State Sci. 2009, 11, 1655-1660. [CrossRef] otwiera się w nowej karcie
  35. Shahi, S.K.; Kaur, N.; Singh, V. Fabrication of phase and morphology controlled pure rutile and rutile/anatase TiO 2 nanostructures in functional ionic liquid/water. Appl. Surf. Sci. 2016, 360, 953-960. [CrossRef] otwiera się w nowej karcie
  36. Yan, X.; Ohno, T.; Nishijima, K.; Abe, R.; Ohtani, B. Is methylene blue an appropriate substrate for a photocatalytic activity test? A study with visible-light responsive Titania. Chem. Phys. Lett. 2006, 429, 606-610. [CrossRef] otwiera się w nowej karcie
  37. Ohtani, B. Photocatalysis A to Z-What we know and what we do not know in a scientific sense. J. Photochem. Photobiol. C Photochem. Rev. 2010, 11, 157-178. [CrossRef] otwiera się w nowej karcie
  38. Li, F.-T.; Wang, X.-J.; Zhao, Y.; Liu, J.-X.; Hao, Y.-J.; Liu, R.-H.; Zhao, D.-S. Ionic-liquid-assisted synthesis of high-visible-light-activated N-B-F-tri-doped mesoporous TiO 2 via a microwave route. Appl. Catal. B Environ. 2014, 144, 442-453. [CrossRef] otwiera się w nowej karcie
  39. Mirhoseini, F.; Salabat, A. Ionic liquid based microemulsion method for the fabrication of poly (methyl methacrylate)-TiO 2 nanocomposite as a highly efficient visible light photocatalyst. RSC Adv. 2015, 5, 12536-12545. [CrossRef] otwiera się w nowej karcie
  40. Raj, K.J.A.; Viswanathan, B. Effect of surface area, pore volume and particle size of P25 titania of the phase transformation of anatase to rutile. Indian J. Chem. 2009, 48A, 1378-1382.
  41. Djerdj, I.; Tonejc, A.M. Structural investigations of nanocrystalline TiO 2 samples. J. Alloys Compd. 2006, 413, 159-174. [CrossRef] otwiera się w nowej karcie
  42. Naumkin, A.V.; Kraut-Vass, A.; Gaarenstroom, S.W.; Powell, C.J. NIST X-ray Photoelectron Spectroscopy Database, NIST Standard Reference Database 20, Version 4.1. 2012. Available online: http://srdata.nist.gov/ xps/ (accessed on 25 March 2013).
  43. Hu, X.; Zhang, T.; Jin, Z.; Zhang, J.; Xu, W.; Yan, J.; Zhang, J.; Zhang, L.; Wu, Y. Fabrication of carbon-modified TiO 2 nanotube arrays and their photocatalytic activity. Mater. Lett. 2008, 62, 4579-4581. [CrossRef] otwiera się w nowej karcie
  44. Janus, M.; Inagaki, M.; Tryba, B.; Toyoda, M.; Morawski, A.W. Carbon-modified TiO 2 photocatalyst by ethanol carbonisation. Appl. Catal. B Environ. 2006, 63, 272-276. [CrossRef] otwiera się w nowej karcie
  45. Kusiak-Nejman, E.; Janus, M.; Grzmil, B.; Morawski, A.W. Methylene Blue decomposition under visible light irradiation in the presence of carbon-modified TiO 2 photocatalysts. J. Photochem. Photobiol. A Chem. 2011, 226, 68-72. [CrossRef] otwiera się w nowej karcie
  46. Li, Y.; Wang, Y.; Kong, J.; Jia, H.; Wang, Z. Synthesis and characterization of carbon modified TiO 2 nanotube and photocatalytic activity on methylene blue under sunlight. Appl. Surf. Sci. 2015, 344, 176-180. [CrossRef] otwiera się w nowej karcie
  47. Wei, X.-N.; Wang, H.-L.; Wang, X.-K.; Jiang, W.-F. Facile synthesis of tunable carbon modified mesoporous TiO 2 for visible light photocatalytic application. Appl. Surf. Sci. 2017, 412, 357-365. [CrossRef] otwiera się w nowej karcie
  48. Qi, H.-P.; Liu, Y.-Z.; Chang, L.; Wang, H.-L. In-situ one-pot hydrothermal synthesis of carbon-TiO 2 nanocomposites and their photocatalytic applications. J. Environ. Chem. Eng. 2017, 5, 6114-6121. [CrossRef] otwiera się w nowej karcie
  49. Wu, D.; Long, M.; Cai, W.; Chen, C.; Wu, Y. Low temperature hydrothermal synthesis of N-doped TiO 2 photocatalyst with high visible-light activity. J. Alloys Compd. 2010, 502, 289-294. [CrossRef] otwiera się w nowej karcie
  50. Dolat, D.; Quici, N.; Kusiak-Nejman, E.; Morawski, A.W.; Puma, G.L. One-step, hydrothermal synthesis of nitrogen, carbon co-doped titanium dioxide (N, CTiO 2 ) photocatalysts. Effect of alcohol degree and chain length as carbon dopant precursors on photocatalytic activity and catalyst deactivation. Appl. Catal. B Environ. 2012, 115, 81-89. [CrossRef] otwiera się w nowej karcie
  51. Peng, F.; Cai, L.; Huang, L.; Yu, H.; Wang, H. Preparation of nitrogen-doped titanium dioxide with visible-light photocatalytic activity using a facile hydrothermal method. J. Phys. Chem. Solids 2008, 69, 1657-1664. [CrossRef] otwiera się w nowej karcie
Źródła finansowania:
Weryfikacja:
Politechnika Gdańska

wyświetlono 142 razy

Publikacje, które mogą cię zainteresować

Meta Tagi