Laboratory research on the influence of swelling clay on the quality of borehole cementing and evaluation of clay-cutting wellbore tool prototype - Publikacja - MOST Wiedzy

Wyszukiwarka

Laboratory research on the influence of swelling clay on the quality of borehole cementing and evaluation of clay-cutting wellbore tool prototype

Abstrakt

Swelling clay phenomenon is frequently observed during oil and gas drilling operations and has a significant impact on the quality of cementing procedure. Certain types of clayey minerals increase their volume in contact with water-based drilling fluids. After drilling is completed, borehole remains unsupported and filled with waterbased drilling fluids for several hours, before a casing string is inserted and secured with cement. In the period of time between completing the drilling and inserting the casing string the clay can expand hindering proper cementing or blocking the casing string in a wellbore. Filling the annular space between a casing pipe and wellbore walls with cement is crucial for further exploitation of a well. An improper performance of displacement work (primary cementing) may cause both financial losses and environmental damage. The aim of this study is to describe the impact of distorted annular space geometry on cement sheath quality and to examine the possibility of improving the distorted geometry with a prototype wellbore tool. The tool was designed to be mounted as a first pipe section on the casing string (cementing shoe/reamer shoe). Two test stands were designed and constructed. The first one simulates the well cementing process, while the second one simulates the downward movement of the casing pipe in the well (run in hole process) drilled in expansive clay. Six distorted annular space sections were cemented using the first test stand. The sections were scanned with μXCT (computed micro-tomography) to locate discontinuities in the cement sheath. This research has confirmed an adverse influence of annular space obstructions on the cement sheath quality, thus the necessity of removing them before cementing. The obstructions can be removed by means of newly designed clay cutting wellbore tool. Therefore, the prototype of such a tool was tested on the second test stand. The experiment allowed to evaluate an influence of a swollen clay obstruction on the force needed to push the prototype tool through the obstruction. The same experiment was conducted with a standard cementing shoe in order to obtain comparative data. Hole geometry improvement, ability to fragment and remove clay cuttings have been observed. The research has confirmed that the prototype tool efficiently improves the borehole geometry and, consequently, improves the cement sheath quality.

Cytowania

  • 1

    CrossRef

  • 0

    Web of Science

  • 3

    Scopus

Cytuj jako

Pełna treść

pobierz publikację
pobrano 170 razy
Wersja publikacji
Accepted albo Published Version
Licencja
Creative Commons: CC-BY-NC-ND otwiera się w nowej karcie

Słowa kluczowe

Informacje szczegółowe

Kategoria:
Publikacja w czasopiśmie
Typ:
artykuł w czasopiśmie wyróżnionym w JCR
Opublikowano w:
APPLIED CLAY SCIENCE nr 164, strony 13 - 25,
ISSN: 0169-1317
Język:
angielski
Rok wydania:
2018
Opis bibliograficzny:
Kmieć M., Karpiński B., Antoszkiewicz M., Szkodo M.: Laboratory research on the influence of swelling clay on the quality of borehole cementing and evaluation of clay-cutting wellbore tool prototype// APPLIED CLAY SCIENCE. -Vol. 164, (2018), s.13-25
DOI:
Cyfrowy identyfikator dokumentu elektronicznego (otwiera się w nowej karcie) 10.1016/j.clay.2018.04.028
Bibliografia: test
  1. J. D. Mangadlao, P. Cao, and R. C. Advincula, "Smart cements and cement additives for oil and gas operations," J. Pet. Sci. Eng., vol. 129, pp. 63-76, 2015. otwiera się w nowej karcie
  2. E. B. Nelson, Well cementing, vol. 28. Newnes, 1990.
  3. K. Docherty, S. Kefi, I. Khalfallah, S. Taoutaou, M. Offenbacher, and R. Ravitz, "Mud removal -clearing the way for effective cementing." Oilfield Review 28, Schlumberger.
  4. R. Nygaard, "Well Design and Well Integrity: Wabamun Area CO2 Sequestration Project," Inst. Sustain. Energy, Environ. Econ. Calgary, Canada Univ. Calgary, 2010. otwiera się w nowej karcie
  5. D. U. Etetim, "Well Integrity behind casing during well operation. Alternative sealing materials to cement," Institutt for petroleumsteknologi og anvendt geofysikk, 2013.
  6. M. A. Celia, S. Bachu, J. M. Nordbotten, S. E. Gasda, and H. K. Dahle, "Quantitative estimation of CO2 leakage from geological storage: Analytical models, numerical models and data needs," in Proceedings of 7th International Conference on Greenhouse Gas Control Technologies.(GHGT-7), 2004, pp. 663-672. otwiera się w nowej karcie
  7. C. Teodoriu, C. Kosinowski, M. Amani, J. Schubert, and A. Shadravan, "Wellbore integrity and cement failure at HPHT conditions," Int. J. Eng., vol. 2, no. 2, pp. 2305- 8269, 2013.
  8. A. T. Bourgoyne, K. K. Millheim, and M. E. Chenevert, Applied drilling engineering. Society of Petroleum Engineers, 1991.
  9. W. C. Lyons and G. J. Plisga, Standard handbook of petroleum and natural gas engineering. Gulf Professional Publishing, 2011. otwiera się w nowej karcie
  10. C. Teodoriu, K. M. Reinicke, C. Fichter, and P. Wehling, "Investigations on casing- cement interaction with application to gas and CO2 storage wells," in SPE EUROPEC/EAGE Annual Conference and Exhibition 14-17 June, 2010. otwiera się w nowej karcie
  11. B. Karpiński and M. Szkodo, "Clay Minerals-Mineralogy and Phenomenon of Clay Swelling in Oil & Gas Industry," Adv. Mater. Sci., vol. 15, no. 1, pp. 37-55, 2015. otwiera się w nowej karcie
  12. S. Bittleston and D. Guillot, "Mud removal: research improves traditional cementing guidelines," Oilf. Rev., vol. 3, no. 2, pp. 44-54, 1991.
  13. E. B. Nelson, "Well cementing fundamentals," Oilf. Rev., vol. 24, no. 2, p. 59, 2012. otwiera się w nowej karcie
  14. F. Civan, "Chapter 1 -Overview of formation damage," in Reservoir Formation Damage, Gulf Professional Publishing, 2007, pp. 1-9. otwiera się w nowej karcie
  15. J. K. Fink, Petroleum Engineer's Guide to Oil Field Chemicals and Fluids. Gulf Proffesional Publishisng, 2011. otwiera się w nowej karcie
  16. A. D. Patel, E. Stamatakis, and E. Davis, "Shale hydration inhibition agent and method of use (patent)," 2001.
  17. T. Forsans, C. Durand, A. Onaisi, A. Audibert-Hayet, and C. Ruffet, "Influence of Clays on Borehole Stability. A Literature Survey Part Two: Mechanical Description and Modelling of Clays and Shales Drilling Practices Versus Laboratory Simulations," Rev. l'Institut Français du Pétrole, vol. 50, no. 3, pp. 353-369, 1995. otwiera się w nowej karcie
  18. Z. J. Zhou, W. O. Gunter, and R. G. Jonasson, "Controlling formation damage using clay stabilizers: a review," in Annual Technical Meeting, June 7 -9, Calgary, Alberta, Canada, 1995. otwiera się w nowej karcie
  19. E. Van Oort, "Physico-chemical stabilization of shales," in International Symposium on Oilfield Chemistry 18-21 February, Houston, Texas, USA, 1997. otwiera się w nowej karcie
  20. H. A. Ohen and F. Civan, "Simulation of formation damage in petroleum reservoirs," SPE Adv. Technol. Ser., vol. 1, no. 1, pp. 27-35, 1993. otwiera się w nowej karcie
  21. J. O. Amaefule, D. G. Kersey, D. L. Norman, and P. M. Shannon, "Advances in Formation damage Assessment and Control Strategies. CIM Paper No. 88-39-65," in Proceedings of the 39th Annual Technical Meeting of Petroleum Society of CIM and Canadian Gas Processors Association, Calgary, Alberta, June 12-16, 1988, p. 16. otwiera się w nowej karcie
  22. R. Caenn, H. C. H. Darley, and G. R. Gray, "Introduction to Drilling Fluids," Compos. Prop. Drill. Complet. Fluids (Sixth Ed., pp. 1-37, 2011. otwiera się w nowej karcie
  23. F. Civan, "Chapter 10 -Single-phase formation damage by fines migration and clay swelling," in Reservoir Formation Damage, Gulf Professional Publishing, 2007, pp. 259-316. otwiera się w nowej karcie
  24. A. M. Ezzat, "Completion Fluids Design Criteria and Current Technology Weaknesses," in SPE Formation Damage Control Symposium 22-23 February, Lafayette, Louisiana, USA, 1990.
  25. R. H. McLean, C. W. Manry, and W. W. Whitaker, "Displacement mechanics in primary cementing," J. Pet. Technol., vol. 19, no. 2, pp. 251-260, 1967. otwiera się w nowej karcie
  26. A. Jamot, "Deplacement de la boue par le latier de ciment dans l'espace annulaire tubage-paroi d'un puits," Rev. Assoc. Fr. Techn. Petr, vol. 224, pp. 27-37, 1974.
  27. C. F. Lockyear and A. P. Hibbert, "Integrated primary cementing study defines key factors for field success," J. Pet. Technol., vol. 41, no. 12, p. 1,320-321,325, 1989. otwiera się w nowej karcie
  28. M. Couturler, D. Guillot, H. Hendriks, and F. Callet, "Design rules and associated spacer properties for optimal mud removal in eccentric annuli," in CIM/SPE International Technical Meeting 10-13 June 1992 Calgary, Alberta, Canada, 1990. otwiera się w nowej karcie
  29. C. F. Lockyear, D. F. Ryan, and M. M. Gunningham, "Cement channeling: how to predict and prevent," SPE Drill. Eng., vol. 5, no. 3, pp. 201-208, 1990. otwiera się w nowej karcie
  30. A. Tehrani, J. Ferguson, and S. H. Bittleston, "Laminar Displacement in Annuli: A Combined Experimental and Theoretical Study," SPE Annual Technical Conference and Exhibition, 4-7 October, Washington, D.C. Society of Petroleum Engineers, Washington D.C USA. otwiera się w nowej karcie
  31. T. Deawwanich, "Flow and displacement of viscoplastic fluids in eccentric annuli," University of Adelaide, Adelaide, Australia, 2013.
  32. S. H. Bittleston, J. Ferguson, and I. A. Frigaard, "Mud removal and cement placement during primary cementing of an oil well-Laminar non-Newtonian displacements in an eccentric annular Hele-Shaw cell," J. Eng. Math., vol. 43, no. 2-4, pp. 229-253, 2002.
  33. B. G. Kutchko, B. R. Strazisar, D. A. Dzombak, G. V Lowry, and N. Thaulow, "Degradation of Well Cement by CO2 under Geologic Sequestration Conditions," Environ. Sci. Technol., vol. 41, no. 13, pp. 4787-4792, 2007. otwiera się w nowej karcie
  34. B. G. Kutchko, B. R. Strazisar, G. V Lowry, D. A. Dzombak, and N. Thaulow, "Rate of CO2 attack on hydrated Class H well cement under geologic sequestration conditions," Environ. Sci. Technol., vol. 42, no. 16, pp. 6237-6242, 2008. otwiera się w nowej karcie
  35. J. W. Carey, "Geochemistry of Wellbore Integrity in CO2 Sequestration: Portland Cement-Steel-Brine-CO2 Interactions," Rev. Mineral. Geochemistry, vol. 77, no. 1, pp. 505-539, 2013. otwiera się w nowej karcie
  36. S. Bachu and D. B. Bennion, "Experimental assessment of brine and/or CO 2 leakage through well cements at reservoir conditions," Int. J. Greenh. Gas Control, vol. 3, no. 4, pp. 494-501, 2009. otwiera się w nowej karcie
  37. M. Torsaeter, P. E. Vullum, and O.-M. Nes, "Nanostructure vs. macroscopic properties of mancos shale," in SPE Canadian Unconventional Resources Conference 30 October -1 November Calgary, Alberta., 2012. otwiera się w nowej karcie
  38. T. Vralstad, P. E. Vullum, M. Torsaeter, and N. V. D. T. Opedal, "A visual journey into the 3D chemical nanostructure of oilwell cement," in SPE International Symposium on Oilfield Chemistry 8-10 April The Woodlands, Texas, USA, 2013.
  39. F. Mees, R. Swennen, M. Van Geet, and P. Jacobs, "Applications of X-ray computed tomography in the geosciences," Geol. Soc. London, Spec. Publ., vol. 215, no. 1, pp. 1- 6, 2003. otwiera się w nowej karcie
  40. C. Kjøller, M. Torsaeter, A. Lavrov, and P. Frykman, "Novel experimental/numerical approach to evaluate the permeability of cement-caprock systems," Int. J. Greenh. Gas Control, vol. 45, pp. 86-93, 2016. otwiera się w nowej karcie
  41. T. Yalcinkaya, M. Radonjic, C. S. Willson, and S. Bachu, "Experimental study on a single cement-fracture using CO 2 rich brine," Energy Procedia, vol. 4, pp. 5335-5342, 2011. otwiera się w nowej karcie
  42. H. B. Jung, D. Jansik, and W. Um, "Imaging wellbore cement degradation by carbon dioxide under geologic sequestration conditions using X-ray computed microtomography," Environ. Sci. Technol., vol. 47, no. 1, pp. 283-289, 2012. otwiera się w nowej karcie
  43. P. Cao, Z. T. Karpyn, and L. Li, "Dynamic alterations in wellbore cement integrity due to geochemical reactions in CO2-rich environments," Water Resour. Res., vol. 49, no. 7, pp. 4465-4475, 2013. otwiera się w nowej karcie
  44. H. E. Mason, S. D. C. Walsh, W. L. DuFrane, and S. A. Carroll, "Determination of diffusion profiles in altered wellbore cement using X-ray computed tomography methods," Environ. Sci. Technol., vol. 48, no. 12, pp. 7094-7100, 2014. otwiera się w nowej karcie
  45. M. Labus and P. Such, "Microstructural characteristics of wellbore cement and formation rocks under sequestration conditions," J. Pet. Sci. Eng., vol. 138, pp. 77-87, 2016. otwiera się w nowej karcie
  46. D. Wildenschild and A. P. Sheppard, "X-ray imaging and analysis techniques for quantifying pore-scale structure and processes in subsurface porous medium systems," Adv. Water Resour., vol. 51, pp. 217-246, 2013. otwiera się w nowej karcie
  47. M. S. Jouini and N. Keskes, "Numerical estimation of rock properties and textural facies classification of core samples using X-Ray Computed Tomography images," Appl. Math. Model., vol. 41, pp. 562-581, 2017. otwiera się w nowej karcie
  48. C. H. Arns, M. A. Knackstedt, V. Pinczewski, and N. S. Martys, "Virtual permeametry onmicrotomographic images," J. Pet. Sci. Eng, vol. 45, no. 1-2, pp. 41-46, 2004. otwiera się w nowej karcie
  49. H. Andrä et al., "Digital rock physics benchmarks-Part I: Imaging and segmentation," Comput. Geosci., vol. 50, pp. 25-32, 2013. otwiera się w nowej karcie
  50. H. Andrä et al., "Digital rock physics benchmarks-Part II: Computing effective properties," Comput. Geosci., vol. 50, pp. 33-43, 2013. otwiera się w nowej karcie
  51. H. Mueller, C.-P. Herold, F. Bongardt, N. Herzog, and S. Von Tapavicza, "Lubricants for drilling fluids (patent)," EP 2036963 A1, 2004.
  52. Bolewski Ł., Szewczuk P., and S. M., "New type guide-shoe R&D project, NCBiR - borehole tests," Przegląd Górniczy, vol. 72, no. 11, pp. 76-80, 2016.
  53. C. A. Taylor, T. A. Fonte, and J. K. Min, "Computational fluid dynamics applied to cardiac computed tomography for noninvasive quantification of fractional flow reserve," J. Am. Coll. Cardiol., vol. 61, no. 22, pp. 2233-2241, 2013. otwiera się w nowej karcie
  54. Ł. Bolewski, P. Szewczuk, Szkodo, and M. M. Kiełt, "Borehole calibrator and its influence on a borehole cementing quality," Energetyka, vol. 8, pp. 457-460, 2017.
  55. A. Piroozian, I. Ismail, Z. Yaacob, P. Babakhani, and A. S. I. Ismail, "Impact of drilling fluid viscosity, velocity and hole inclination on cuttings transport in horizontal and highly deviated wells," J. Pet. Explor. Prod. Technol., vol. 2, no. 3 LB-Piroozian2012, pp. 149-156, 2012. otwiera się w nowej karcie
  56. T. Garg and S. Gokavarapu, "Lessons Learnt From Root Cause Analysis of Gulf of otwiera się w nowej karcie
Źródła finansowania:
Weryfikacja:
Politechnika Gdańska

wyświetlono 115 razy

Publikacje, które mogą cię zainteresować

Meta Tagi