Physicochemical Properties and Application of Silica-Doped Biochar Composites as Efficient Sorbents of Copper from Tap Water - Publikacja - MOST Wiedzy

Wyszukiwarka

Physicochemical Properties and Application of Silica-Doped Biochar Composites as Efficient Sorbents of Copper from Tap Water

Abstrakt

This article concerns research on new sorption materials based on silica-doped activated carbon. A two-stage synthesis involved pyrolysis of plant material impregnated in a water glass solution , followed by hydrothermal activation of the pyrolysate in KOH solution. The resulting composite can be used as a sorbent in drinking water filters. The proposed method of synthesis enables the design of materials with a surface area of approximately 150 m 2 ·g −1 , whose chemical composition and structure were confirmed by scanning electron microscopy/energy dispersive spectroscopy (SEM/EDS), X-ray diffraction (XRD), thermogravimetry/differential thermal analysis (TG/DTA) and Fourier-transform infrared spectroscopy (FTIR). The sorption properties of the obtained materials were determined relative to copper ions using the batch experiment method. The optimal operating parameters of the obtained materials relative to copper ions are T = 313.15 K, pH = 5, S:L ratio = 4 g·dm −3 and t = 120 min. The research shows that the sorption kinetics of copper ions can be described by a pseudo-second-order model. The plotted copper(II) sorption isotherm clearly indicates the Langmuir model. Under optimal conditions, the maximum sorption of copper ions was 37.74 mg·g −1 , which is a satisfactory result and confirms the possibility of using the obtained material in drinking water filters.

Cytowania

Autor (1)

Cytuj jako

Pełna treść

pobierz publikację
pobrano 2 razy
Wersja publikacji
Submitted Version
Licencja
Creative Commons: CC-BY-NC-ND otwiera się w nowej karcie

Słowa kluczowe

Informacje szczegółowe

Kategoria:
Publikacja w czasopiśmie
Typ:
Publikacja w czasopiśmie
Opublikowano w:
Materials nr 16, wydanie 2794,
ISSN: 1996-1944
Rok wydania:
2023
DOI:
Cyfrowy identyfikator dokumentu elektronicznego (otwiera się w nowej karcie) https://doi.org/10.3390/ma16072794
Bibliografia: test
  1. Sabzehmeidani, M.M.; Mahnaee, S.; Ghaedi, M.; Heidari, H.; Roy, V.A.L. Carbon based materials: A review of adsorbents for inorganic and organic compounds. Mater. Adv. 2021, 2, 598-627. [CrossRef] otwiera się w nowej karcie
  2. Mood, S.H.; Pelaez-Samaniego, M.R.; Garcia-Perez, M. Perspectives of Engineered Biochar for Environmental Applications: A Review. Energy Fuels 2022, 36, 7940-7986. [CrossRef] otwiera się w nowej karcie
  3. Chen, D.; Li, Y.; Bao, M.; Hou, Y.; Jin, J.; Yin, Z.; Wang, Z. Magnet-Responsive Silica Microrods as Solid Stabilizer and Adsorbent for Simultaneous Removal of Coexisting Contaminants in Water. ACS Sustain. Chem. Eng. 2019, 7, 13786-13795. [CrossRef] otwiera się w nowej karcie
  4. Ece, M.S.; Kutluayc, S.;Şahin, O.; Sabit Horoz, S. Development of Novel Fe 3 O 4 /AC-SiO 2 -1,4-DAAQ Magnetic Nanoparticles with Outstanding VOC Removal Capacity: Characterization, Optimization, Reusability, Kinetics, and Equilibrium Studies. Ind. Eng. Chem. Res. 2020, 59, 21106-21123. [CrossRef] otwiera się w nowej karcie
  5. Singh, P.; Sarswatc, A.; Pittman, C.U.; Mlsna, T.; Mohan, D. Sustainable Low-Concentration Arsenite [As(III)] Removal in Single and Multicomponent Systems Using Hybrid Iron Oxide−Biochar Nanocomposite Adsorbents: A Mechanistic Study. ACS Omega 2020, 5, 2575-2593. [CrossRef] otwiera się w nowej karcie
  6. Lu, L.; Shan, R.; Shi, Y.; Wang, S.; Yuan, H. A novel TiO 2 /biochar composite catalysts for photocatalytic degradation of methyl orange. Chemosphere 2019, 222, 391-398. [CrossRef] [PubMed] otwiera się w nowej karcie
  7. Chandra, S.; Jagdale, P.; Medha, I.; Kumar Tiwari, A.K.; Bartoli, M.; De Nino, A.; Olivito, F. Biochar-Supported TiO 2 -Based Nanocomposites for the Photocatalytic Degradation of Sulfamethoxazole in Water-A Review. Toxics 2021, 9, 313. [CrossRef] otwiera się w nowej karcie
  8. Mazurek, K.; Drużyński, S.; Kiełkowska, U.; Bielicka, A.; Gluzińska, J. Application of sulphate and magnesium enriched waste rapeseed cake biochar for recovery of Cu(II) and Zn(II) from industrial wastewater generated in sulphuric acid plants. Hydrometallurgy 2023, 216, 106014. [CrossRef] otwiera się w nowej karcie
  9. Liu, X.; Shen, F.; Qi, X. Adsorption recovery of phosphate from aqueous solution by CaO-biochar composites prepared from eggshell and rice straw. Sci. Total Environ. 2019, 666, 694-702. [CrossRef] otwiera się w nowej karcie
  10. Li, J.; Xiong, Z.; Duan, F. Interaction investigation of three forest waste biochars and CaO in the process of Ca-L/CARBONOx. Fuel 2023, 337, 126841. [CrossRef] otwiera się w nowej karcie
  11. Zhou, Q.; Jiang, X.; Li, X.; Jia, C.Q.; Jiang, W. Preparation of high-yield N-doped biochar from nitrogen-containing phosphate and its effective adsorption for toluene. RSC Adv. 2018, 8, 30171-30179. [CrossRef] [PubMed] otwiera się w nowej karcie
  12. Arif, M. Extraction of iron (III) ions by core-shell microgel for in situ formation of iron nanoparticles to reduce harmful pollutants from water. J. Environ. Chem. Eng. 2023, 11, 109270. [CrossRef] otwiera się w nowej karcie
  13. Arif, M.; Shahid, M.; Irfan, A.; Nisar, J.; Wang, X.; Batool, N.; Ali, M.; Farooqi, Z.H.; Robina Begum, R. Extraction of copper ions from aqueous medium by microgel particles for in-situ fabrication of copper nanoparticles to degrade toxic dyes. Z. Für Phys. Chem. 2022, 236, 0038. [CrossRef] otwiera się w nowej karcie
  14. Ajmal, M.; Siddiq, M.; Aktasc, N.; Sahiner, N. Magnetic Co-Fe bimetallic nanoparticle containing modifiable microgels for the removal of heavy metal ions, organic dyes and herbicides from aqueous media. RSC Adv. 2015, 5, 43873. [CrossRef] otwiera się w nowej karcie
  15. Jjagwe, J.; Olupot, P.W.; Menya, E.; Kalibbala, H.M. Synthesis and application of granular activated carbon from biomass waste materials for water treatment: A review. J. Bioresour. Bioprod. 2021, 6, 292-322. [CrossRef] otwiera się w nowej karcie
  16. Obey, G.; Adelaide, M.; Ramaraj, R. Biochar derived from non-customized matamba fruit shell as an adsorbent for wastewater treatment. J. Bioresour. Bioprod. 2022, 7, 109-115. [CrossRef] otwiera się w nowej karcie
  17. Alsamadany, H.; Alharby, H.F.; Al-Zahrani, H.S.; Alzahrani, Y.M.; Abbas, A.A.A.G.; Farooq, M.A. Silicon-nanoparticles dopped biochar is more efective than biochar for mitigation of arsenic and salinity stress in Quinoa: Insight to human health risk assessment. Front. Plant Sci. 2022, 13, 989504. [CrossRef] otwiera się w nowej karcie
  18. Nguyen, M.N. Potential use of silica-rich biochar for the formulation of adaptively controlled release fertilizers: A mini review. J. Clean. Prod. 2021, 307, 127188. [CrossRef] otwiera się w nowej karcie
  19. Chakraborty, V.; Pas, D. Synthesis of nano-silica-coated biochar from thermal conversion of sawdust and its application for Cr removal: Kinetic modelling using linear and nonlinear method and modelling using artificial neural network analysis. Biomass Convers. Biorefinery 2020, 13, 821-831. [CrossRef] otwiera się w nowej karcie
  20. Liu, L.; Yang, X.; Ahmad, S.; Li, X.; Ri, C.; Tang, J.; Ellam, R.M.; Song, Z. Silicon (Si) modification of biochars from different Si-bearing precursors improves cadmium remediation. Chem. Eng. J. 2023, 457, 141194. [CrossRef] otwiera się w nowej karcie
  21. World Health Organization. Evaluation of Certain Food Additives and Contaminants; Technical Report Series 683; World Health Organization: Geneva, Switzerlad, 1982; ISBN 9789241209953. otwiera się w nowej karcie
  22. Fewtrell, L.; Kay, D.; MacGill, S. A review of the science behind drinking water standards for copper. Int. J. Environ. Health Res. 2010, 11, 161-167. [CrossRef] otwiera się w nowej karcie
  23. Manne, R.; Kumaradoss, M.M.R.M.; Iska, R.S.R.; Devarajan, A.; Mekala, N. Water quality and risk assessment of copper content in drinking water stored in copper container. Appl. Water Sci. 2022, 12, 27. [CrossRef] otwiera się w nowej karcie
  24. Harvey, P.J.; Handley, H.K.; Taylor, M.P. Widespread copper and lead contamination of household drinking water, New South Wales, Australia. Environ. Res. 2016, 151, 275-285. [CrossRef] [PubMed] otwiera się w nowej karcie
  25. Xiang, Y.; Ding, S.; Chen, X.; Cao, C.; Sun, J.; Xu, L.; Liu, G. Recovery of gold from waste solutions using a new RFB resin. Hydrometallurgy 2020, 198, 105516. [CrossRef] otwiera się w nowej karcie
  26. Wołowicz, A.; Hubicki, Z. Removal of vanadium by ion exchange resins from model and real solutions from spent V 2 O 5 catalyst. Hydrometallurgy 2022, 211, 105871. [CrossRef] otwiera się w nowej karcie
  27. Lingamdinne, L.P.; Koduru, J.R.; Roh, H.; Choi, Y.; Chang, Y.; Yang, J. Adsorption removal of Co(II) from waste-water using graphene oxide. Hydrometallurgy 2016, 165, 90-96. [CrossRef] otwiera się w nowej karcie
  28. Mazurek, K.; Drużyński, S.; Kiełkowska, U.; Szłyk, E. New Separation Material Obtained from Waste Rapeseed Cake for Copper(II) and Zinc(II) Removal fromthe Industrial Wastewater. Materials 2021, 14, 2566. [CrossRef] [PubMed] otwiera się w nowej karcie
  29. Mohan, D.; Abhishek, K.; Sarswat, A.; Patel, M.; Singh, P.; Pittman, C.U. Biochar production and applications in soil fertility and carbon sequestration-A sustainable solution to crop-residue burning in India. RSC Adv. 2018, 8, 508-520. [CrossRef] otwiera się w nowej karcie
  30. Freitas, A.M.; Nair, V.D.; Harris, W.G. Biochar as Influenced by Feedstock Variability: Implications and Opportunities for Phosphorus Management. Front. Sustain. Food Syst. 2020, 4, 510982. [CrossRef] otwiera się w nowej karcie
  31. Husin, H.; Asnawi, T.M.; Firdaus, A.; Husaini, H.; Ibrahim, I.; Hasfita, F. Solid Catalyst Nanoparticles derived from Oil-Palm Empty Fruit Bunches (OP-EFB) as a Renewable Catalyst for Biodiesel Production. Mater. Sci. Eng. 2018, 358, 012008. [CrossRef] otwiera się w nowej karcie
  32. Hossain, N.; Nizamuddin, S.; Griffin, G.; Selvakannan, P.; Mubarak, N.M.; Mahlia, T.M.I. Synthesis and characterization of rice husk biochar via hydrothermal carbonization for wastewater treatment and biofuel production. Sci. Rep. 2020, 10, 18851. [CrossRef] [PubMed] otwiera się w nowej karcie
  33. Sumon Reza, M.S.; Afroze, S.; Muhammad, S.A.; Bakar Saidur, R.; Aslfattahi, N.; Taweekun, J.; Azad, A.K. Biochar characterization of invasive Pennisetum purpureum grass: Effect of pyrolysis temperature. Biochar 2020, 2, 239-251. [CrossRef] otwiera się w nowej karcie
  34. Putra, W.P.; Kamari, A.; Yusoff AN, M.; Ishak, C.F.; Mohamed, A.; Hashim, N.; IIsa, I.M. Biosorption of Cu(II), Pb(II) and Zn(II) ions from aqueous solutions using selected waste materials: Adsorption and characterisation studies. J. Encapsulation Adsorpt. Sci. 2014, 4, 25-35. [CrossRef] otwiera się w nowej karcie
  35. Sabela, M.I.; Kunene, K.; Kanchi, S.; Xhakaza, N.M.; Bathinapatla, A.; Mdluli, P.; Sharma, D.; Bisetty, K. Removal of copper (II) from wastewater using green vegetable waste derived activated carbon: An approach to equilibrium and kinetic study. Arab. J. Chem. 2019, 12, 4331-4339. [CrossRef] otwiera się w nowej karcie
  36. Niu, Y.; Yu, W.; Qin, Z.; Nie, X.; Yang, S.; Wan, Q. Adsorption characteristics of copper ion on nanoporous silica. Acta Geochim. 2019, 38, 517-529. [CrossRef] otwiera się w nowej karcie
  37. Vengris, T.; Binkiene, R.; Sveikauskaite, A. Nickel, copper, and zinc removal from wastewater by a modified clay sorbent. Appl. Clay Sci. 2001, 18, 183-190. [CrossRef] otwiera się w nowej karcie
  38. Wei, J.; Chen, S.; Li, Y.; He, Z.; Geng, L.; Liao, L. Aqueous Cu(II) ion adsorption by amino-functionalized mesoporous silica KIT-6. RSC Adv. 2020, 10, 20504. [CrossRef] otwiera się w nowej karcie
  39. Nasernejad, B.; Zadeh, T.E.; Pour, B.B.; Bygi, M.E.; Zamani, A. Camparison for biosorption modeling of heavy metals (Cr(III), Cu(II), Zn(II)) adsorption from wastewater by carrot residues. Process Biochem. 2005, 40, 1319-1322. [CrossRef] otwiera się w nowej karcie
  40. Cibati, A.; Foereid, B.; Bissessur, A.; Hapca, S. Assessment of Miscanthus giganteus derived biochar as copper and zinc adsorbent: Study of the effect of pyrolysis temperature, pH and hydrogen peroxide modification. J. Clean. Prod. 2017, 162, 1285-1296. [CrossRef] otwiera się w nowej karcie
  41. Putz, A.; Ivankov, O.I.; Kuklin, A.I.; Ryukhtin, V.; Ianăsi, C.; Ciopec, M.; Negrea, A.; Trif, L.; Horváth, Z.; Almásy, L. Ordered mesoporous silica prepared in different solvent conditions: Application for Cu(II) and Pb(II) adsorption. Gels 2022, 8, 443. [CrossRef] otwiera się w nowej karcie
  42. Jiang, S.; Huang, L.; Nguyen, T.; Ok, Y.S.; Rudolph, V.; Yang, H.; Zhang, D. Copper and zinc adsorption by softwood and hardwood biochars under elevated sulphate-induced salinity and acidic pH conditions. Chemosphere 2016, 142, 64-71. [CrossRef] otwiera się w nowej karcie
  43. Disclaimer/Publisher's Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.
Weryfikacja:
Brak weryfikacji

wyświetlono 21 razy

Publikacje, które mogą cię zainteresować

Meta Tagi