Robust identification of quadrocopter model for control purposes - Publikacja - MOST Wiedzy

Wyszukiwarka

Robust identification of quadrocopter model for control purposes

Abstrakt

The paper addresses a problem of quadrotor unmanned aerial vehicle (so-called X4-flyer or quadrocopter) utility model identification for control design purposes. To that goal the quadrotor model is assumed to be composed of two abstracted subsystems, namely a rigid body (plant) and four motors equipped with blades (actuators). The model of the former is acquired based on a well-established dynamic equations of motion while the latter is to be identified as a static relationship from laboratory experiments data. Moreover, the actuator model is to account for the on-flight battery power source voltage drop effects. The actuator parameter identification algorithm is kept in a set-membership framework. In addition a mechanism to reduce the conservativeness of the solution is proposed and applied. Numerical illustration of the results is provided.

Cytowania

  • 2

    CrossRef

  • 0

    Web of Science

  • 4

    Scopus

Cytuj jako

Pełna treść

pobierz publikację
pobrano 60 razy
Wersja publikacji
Accepted albo Published Version
Licencja
Copyright (2017 IEEE)

Słowa kluczowe

Informacje szczegółowe

Kategoria:
Aktywność konferencyjna
Typ:
materiały konferencyjne indeksowane w Web of Science
Tytuł wydania:
2017 22nd International Conference on Methods and Models in Automation and Robotics (MMAR) strony 337 - 342
Język:
angielski
Rok wydania:
2017
Opis bibliograficzny:
Armiński K., Zubowicz T..: Robust identification of quadrocopter model for control purposes, W: 2017 22nd International Conference on Methods and Models in Automation and Robotics (MMAR), 2017, ,.
DOI:
Cyfrowy identyfikator dokumentu elektronicznego (otwiera się w nowej karcie) 10.1109/mmar.2017.8046849
Bibliografia: test
  1. R. Austin, Unmanned aircraft systems: UAVs design, development and deployment. New York: John Wiley & Sons, 2011, vol. 54. otwiera się w nowej karcie
  2. G. Cai, B. M. Chen, and T. H. Lee, Unmanned rotorcraft systems. Springer Science & Business Media, 2011. otwiera się w nowej karcie
  3. A. Zulu and S. John, "A review of control algorithms for autonomous quadrotors," Open Journal of Applied Sciences, no. 4, pp. 547-556, 2014, dOI: http://dx.doi.org/10.4236/ojapps.2014.414053. otwiera się w nowej karcie
  4. A. Tzes, G. Nikolakopoulos, and K. Alexis, "Model predictive quadrotor control: attitude, altitude and position experimental studies," IET Control Theory & Applications, vol. 6, no. 12, pp. 1812-1827, 2012. [Online]. Available: http://digital- library.theiet.org/content/journals/10.1049/iet-cta.2011.0348 otwiera się w nowej karcie
  5. P. Castillo, R. Lozano, and A. Dzul, "Stabilization of a mini-rotorcraft having four rotors," in 2004 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (IEEE Cat. No.04CH37566), vol. 3, Sept 2004, pp. 2693-2698 vol.3. otwiera się w nowej karcie
  6. P. Castillo, R. Lozano, and A. E. Dzul, Modelling and control of mini- flying machines. Physica-Verlag, 2005. otwiera się w nowej karcie
  7. A. Chovancová, T. Fico,Ľuboš Chovanec, and P. Hubinsk, "Mathematical modelling and parameter identification of quadrotor (a survey)," Procedia Engineering, vol. 96, pp. 172 -181, 2014, modelling of Mechanical and Mechatronic Systems. [Online]. Available: http://www.sciencedirect.com/science/article/pii/S1877705814031981 otwiera się w nowej karcie
  8. R. Mahony, V. Kumar, and P. Corke, "Multirotor aerial vehicles: Modeling, estimation, and control of quadrotor," IEEE robotics & automation magazine, vol. 19, no. 3, pp. 20-32, 2012. otwiera się w nowej karcie
  9. L.-C. Lai, C.-C. Yang, and C.-J. Wu, "Time-optimal control of a hov- ering quad-rotor helicopter," Journal of Intelligent & Robotic Systems, vol. 45, no. 2, pp. 115-135, 2006. otwiera się w nowej karcie
  10. G. V. Raffo, M. G. Ortega, and F. R. Rubio, "An integral predic- tive/nonlinear h∞ control structure for a quadrotor helicopter," Auto- matica, vol. 46, no. 1, pp. 29-39, 2010. otwiera się w nowej karcie
  11. P. McKerrow, "Modelling the draganflyer four-rotor helicopter," in Robotics and Automation, 2004. Proceedings. ICRA '04. 2004 IEEE International Conference on, vol. 4, April 2004, pp. 3596-3601 Vol.4. otwiera się w nowej karcie
  12. T. Hamel, R. Mahony, R. Lozano, and J. Ostrowski, "Dynamic modelling and configuration stabilization for an x4- flyer." IFAC Proceedings Volumes, vol. 35, no. 1, pp. 217 -222, 2002, 15th IFAC World Congress. [Online]. Available: http://www.sciencedirect.com/science/article/pii/S1474667015392697 otwiera się w nowej karcie
  13. L. Derafa, T. Madani, and A. Benallegue, "Dynamic modelling and experimental identification of four rotors helicopter parameters," in 2006 IEEE International Conference on Industrial Technology, Dec 2006, pp. 1834-1839. otwiera się w nowej karcie
  14. P. Pounds, R. Mahony, and P. Corke, "Modelling and control of a large quadrotor robot," Control Engineering Practice, vol. 18, no. 7, pp. 691 -699, 2010, special Issue on Aerial Robotics. [Online]. Available: http://www.sciencedirect.com/science/article/pii/S0967066110000456 otwiera się w nowej karcie
  15. M. Milanese, J. Norton, H. Piet-Lahanier, and E. Walter, Bounding Approaches to System Identication. New York: Plenum Press, 1996. otwiera się w nowej karcie
  16. A. Kusalewicz, K. Armiński, and T. Zubowicz, "Użytkowy model matematyczny quadrocoptera do celów sterowania," Zeszyty Naukowe Wydziału Elektrotechniki i Automatyki Politechniki Gdańskiej, vol. 51, pp. 103-105, 2016, zastosowanie komputerów w nauce i technice (In Polish).
Weryfikacja:
Politechnika Gdańska

wyświetlono 136 razy

Publikacje, które mogą cię zainteresować

Meta Tagi