The influence of crude glycerol and castor oil-based polyol on the structure and performance of rigid polyurethane-polyisocyanurate foams - Publikacja - MOST Wiedzy

Wyszukiwarka

The influence of crude glycerol and castor oil-based polyol on the structure and performance of rigid polyurethane-polyisocyanurate foams

Abstrakt

In this work, biopolyol obtained from two types of industrial crops’ processing products: crude glycerol and castor oil was used for preparation or rigid polyurethane-polyisocyanurate foams. Bio-based polyol was obtained via crude glycerol polymerization and further condensation of resulting polyglycerol with castor oil. Rigid polyurethane-polyisocyanurate foams were prepared at partial substitution (0–70 wt.%) of petrochemical polyol with synthesized bio-based polyol. Influence of the biopolyol content on the chemical and cellular structure, insulation properties, static and dynamic mechanical properties, thermal degradation and fire behavior of foams was investigated. Incorporation of crude glycerol-based polyol into formulation of rigid polyurethane-polyisocyanurate foams had beneficial impact on the structure of material reducing average cell size from 372 to 275 m and increasing closed cell content from 94.0 to 95.7%. Such changes resulted in 7% decrease of thermal conductivity coefficient to 21.8 mW/(m K). Mechanical performance of foams was enhanced by partial substitution of petrochemical polyol with synthesized biopolyol. Compressive strength of modified foam was more than 90% higher than for reference sample. The modifications of foams caused changes in thermal degradation pathway, nevertheless thermal stability of the reference foam was maintained. Incorporation of crude glycerol-based polyol into foams’ formulation decreased maximum value of heat release rate by 3.5%, increased char residue after combustion by 24% and reduced emission of toxic carbon monoxide during burning of foam by 35%.

Cytowania

  • 1 2 1

    CrossRef

  • 0

    Web of Science

  • 1 2 5

    Scopus

Autorzy (6)

Cytuj jako

Pełna treść

pobierz publikację
pobrano 1164 razy
Wersja publikacji
Accepted albo Published Version
Licencja
Creative Commons: CC-BY-NC-ND otwiera się w nowej karcie

Słowa kluczowe

Informacje szczegółowe

Kategoria:
Publikacja w czasopiśmie
Typ:
artykuł w czasopiśmie wyróżnionym w JCR
Opublikowano w:
INDUSTRIAL CROPS AND PRODUCTS nr 95, strony 113 - 125,
ISSN: 0926-6690
Język:
angielski
Rok wydania:
2017
Opis bibliograficzny:
Hejna A., Kirpluks M., Kosmela P., Cabulis U., Haponiuk J., Piszczyk Ł.: The influence of crude glycerol and castor oil-based polyol on the structure and performance of rigid polyurethane-polyisocyanurate foams// INDUSTRIAL CROPS AND PRODUCTS. -Vol. 95, (2017), s.113-125
DOI:
Cyfrowy identyfikator dokumentu elektronicznego (otwiera się w nowej karcie) 10.1016/j.indcrop.2016.10.023
Bibliografia: test
  1. Abdalla, M., Dean, D., Adibempe, D., Nyairo, E., Robinson, P., Thompson, G., 2007. The effect of interfacial chemistry on molecular mobility and morphology of multiwalled carbon nanotubes epoxy nanocomposite. Polymer 48, 5662-5670, http://dx.doi.org/10.1016/j.polymer.2007.06.073. otwiera się w nowej karcie
  2. Allauddin, S., Somisetti, V., Ravinder, T., Rao, B.V.S.K., Narayan, R., Raju, K.V.S.N., 2016. One-pot synthesis and physiochemical properties of high functionality soy polyols and their polyurethane-urea coatings. Ind. Crops Prod. 85, 361-371, http://dx.doi.org/10.1016/j.indcrop.2015.12.087. otwiera się w nowej karcie
  3. Amir Uddin, M.A., Azad, A.K., 2012. Diesel engine performance study for bio-fuel: vegetable oil, a alternative source of fuel. Int. J. Energy Mach. 5, 8-17. otwiera się w nowej karcie
  4. Andersons, J., Kirpluks, M., Stiebra, L., Cabulis, U., 2015. The effect of a circular hole on the tensile strength of neat and filled rigid PUR foams. Theor. Appl. Fract. Mech. 78, 8-14, http://dx.doi.org/10.1016/j.tafmec.2015.05.001. otwiera się w nowej karcie
  5. Arshanitsa, A., Krumina, L., Telysheva, G., Dizhbite, T., 2016. Exploring the application potential of incompletely soluble organosolv lignin as a macromonomer for polyurethane synthesis. Ind. Crops Prod. 2016, 1-12, http://dx.doi.org/10.1016/j.indcrop.2016.07.050. otwiera się w nowej karcie
  6. Berta, M., Lindsay, C., Pans, G., Camino, G., 2006. Effect of chemical structure on combustion and thermal behavior of polyurethane elastomer layered silicate nanocomposites. Polym. Degrad. Stab. 91, 1179-1191, http://dx.doi.org/10. 1016/j.polymdegradstab.2005.05.027. otwiera się w nowej karcie
  7. Bindu, P., Thomas, S., 2013. Viscoelastic behavior and reinforcement mechanism in rubber nanocomposites in the vicinity of spherical nanoparticles. J. Phys. Chem. B 117, 12632-12648, http://dx.doi.org/10.1021/jp4039489. otwiera się w nowej karcie
  8. Bogdan, M., Hoerter, J., Moore, F.O., 2005. Meeting the insulation requirements of the building envelope with polyurethane and polyisocyanurate foam. J. Cell. Plast. 41, 41-56, http://dx.doi.org/10.1177/0021955X05049869. otwiera się w nowej karcie
  9. Budarin, V.L., Clark, J.H., Lanigan, B.A., Shuttleworth, P., Macquarrie, D.J., 2010. Microwave assisted decomposition of cellulose: a new thermochemical route for biomass exploitation. Bioresour. Technol. 101, 3776-3779, http://dx.doi. org/10.1016/j.biortech.2009.12.110. otwiera się w nowej karcie
  10. Cai, Z., Gao, J., Li, X., Xiang, B., 2007. Synthesis and characterization of symmetrical benzodifuranone compounds with femtosecond time-resolved degenerate four-wave mixing technique. Opt. Commun. 272, 503-508, http://dx.doi.org/ 10.1016/j.optcom.2006.11.056. otwiera się w nowej karcie
  11. Casiello, M., Monopoli, A., Cotugno, P., Milella, A., Dell'Anna, M.M., Ciminale, F., Nacci, A., 2014. Copper(II) chloride-catalyzed oxidative carbonylation of glycerol to glycerol carbonate. J. Mol. Catal. A-Chem. 381, 99-106, http://dx. doi.org/10.1016/j.molcata.2013.10.006. otwiera się w nowej karcie
  12. Cassel, S., Debaig, C., Benvegnu, T., Chaimbault, P., Lafosse, M., Plusquellec, D., Rollin, P., 2001. Original synthesis of linear, branched and cyclic oligoglycerol standards. Eur. J. Org. Chem. 2001, 875-896, http://dx.doi.org/10.1002/1099- 0690(200103)2001:5<875:AID-EJOC875>3.0.CO;2-R. otwiera się w nowej karcie
  13. Cervantes-Uc, J.M., Moo Espinosa, J.I., Cauich-Rodriguez, J.V., Avila-Ortega, A., Vazquez-Torres, H., Marcos-Fernandez, A., San Roman, J., 2009. TGA/FTIR studies of segmented aliphatic polyurethanes and their nanocomposites prepared with commercial. Polym. Degrad. Stab. 94, 1666-1677, http://dx.doi. org/10.1016/j.polymdegradstab.2009.06.022. otwiera się w nowej karcie
  14. Cheng, D., Wang, L., Shahbazi, A., Xiu, S., Zhang, B., 2014. Characterization of the physical and chemical properties of the distillate fractions of crude bio-oil produced by the glycerol-assisted liquefaction of swine manure. Fuel 130, 251-256, http://dx.doi.org/10.1016/j.fuel.2014.04.022. otwiera się w nowej karcie
  15. Chhabra, R.P., 2010. Non-Newtionian fluids: an introduction. In: Deshpande, A.P., Krishan, J.M., Kumar, S. (Eds.), Rheology of Complex Fluids. Springer-Verlag, New York, pp. 3-34, http://dx.doi.org/10.1007/978-1-4419-6494-6 1. otwiera się w nowej karcie
  16. Choi, W.J., 2008. Glycerol-based biorefinery for fuels and chemicals. Recent Pat. Biotechnol. 2, 173-180, http://dx.doi.org/10.2174/187220808786241006. otwiera się w nowej karcie
  17. Clacens, J.M., Pouilloux, Y., Barrault, J., 2000. Synthesis and modification of basic mesoporous materials for the selective etherification of glycerol. Stud. Surf. Sci. Catal. 143, 687-695, http://dx.doi.org/10.1016/S0167-2991(00)80711-9. otwiera się w nowej karcie
  18. Deng, S., Ting, Y.P., 2005. Characterization of PEI-modified biomass and biosorption of Cu (II), Pb (II) and Ni (II). Water Res. 39, 2167-2177. otwiera się w nowej karcie
  19. Dziubiński, M., Kiljański, T., Sęk, J., 2009. Podstawy reologii i reometrii płynów. Lodz University of Technology Publisher, Lodz, Poland.
  20. Ezhova, N.N., Korosteleva, I.G., Kolesnichenko, N.V., Kuzmin, A.E., Khadzhiev, S.N., Vasileva, M.A., Voronina, Z.D., 2012. Glycerol carboxylation to glycerol carbonate in the presence of rhodium complexes with phosphine ligands. Petrol. Chem. 52, 91-96, http://dx.doi.org/10.1134/S0965544112020041. otwiera się w nowej karcie
  21. Fournier, D., Du Prez, F., 2008. Click chemistry as a promising tool for side-chain functionalization of polyurethanes. Macromolecules 41, 4622-4630, http://dx. doi.org/10.1021/ma800189z. otwiera się w nowej karcie
  22. Glicksman, L.R., 1994. Heat transfer in foams. In: Hylyard, N.C., Cunningham, A. (Eds.), Low Density Cellular Plastics. Kluwer Academic Publishers, Dordrecht, pp. 115-116, http://dx.doi.org/10.1007/978-94-011-1256-7. otwiera się w nowej karcie
  23. Hoekman, S.K., Broch, A., Robbins, C., Ceniceros, E., Natarajan, M., 2012. Review of biodiesel composition, properties, and specifications. Renew. Sustain. Energy Rev. 16, 143-169, http://dx.doi.org/10.1016/j.rser.2011.07.143. otwiera się w nowej karcie
  24. Hu, S., Li, Y., 2014. Polyols and polyurethane foams from base-catalyzed liquefaction of lignocellulosic biomass by crude glycerol: effects of crude glycerol impurities. Ind. Crops Prod. 57, 188-194, http://dx.doi.org/10.1016/j. indcrop.2014.03.032. otwiera się w nowej karcie
  25. Hu, S., Wan, C., Li, Y., 2012. Production and characterization of biopolyols and polyurethane foams from crude glycerol based liquefaction of soybean straw. Bioresour. Technol. 103, 227-233, http://dx.doi.org/10.1016/j.biortech.2011. 09.125. otwiera się w nowej karcie
  26. Ionescu, M., Petrovic, Z.S., 2010. High functionality polyether polyols based on polyglycerol. J. Cell. Plast. 46, 223-237, http://dx.doi.org/10.1177/ 0021955X09355887. otwiera się w nowej karcie
  27. Jagadeeswaraiah, K., Kumar, C.R., Sai Prasad, P.S., Loridant, S., Lingaiah, N., 2014. Synthesis of glycerol carbonate from glycerol and urea over tin-tungsten mixed oxide catalysts. Appl. Catal. A-Gen. 469, 165-172, http://dx.doi.org/10. 1016/j.apcata.2013.09.041. otwiera się w nowej karcie
  28. Jiao, L., Xiao, H., Wang, Q., Sun, J., 2013. Thermal degradation characteristics of rigid polyurethane foam and the volatile products analysis with TG-FTIR-MS. Polym. Degrad. Stab. 98, 2687-2696, http://dx.doi.org/10.1016/j. polymdegradstab.2013.09.032. otwiera się w nowej karcie
  29. Kainthan, R.K., Muliawan, E.B., Hatzikiriakos, S.G., Brooks, D.E., 2006. Synthesis, characterization, and viscoelastic properties of high molecular weight hyperbranched polyglycerols. Macromolecules 39, 7708-7717, http://dx.doi. org/10.1021/ma0613483. otwiera się w nowej karcie
  30. Kairyte, A., Vejelis, S., 2015. Evaluation of forming mixture composition impact on properties of water blown rigid polyurethane (PUR) foam from rapeseed oil polyol. Ind. Crops Prod. 6, 210-215, http://dx.doi.org/10.1016/j.indcrop.2014. 12.032. otwiera się w nowej karcie
  31. Kirpluks, M., Cabilis, U., Zeltins, V., Stiebra, L., Avots, A., 2014. Rigid polyurethane foam thermal insulation protected with mineral intumescent mat. Autex Res. J. 14, 259-269, http://dx.doi.org/10.2478/aut-2014-0026. otwiera się w nowej karcie
  32. Klepáčová, K., Mravec, D., Bajus, M., 2005. tert-Butylation of glycerol catalyzed by ion-exchange resins. Appl. Catal. A-Gen. 294, 141-147, http://dx.doi.org/10. 1016/j.apcata.2005.06.027. otwiera się w nowej karcie
  33. Kurańska, M., Prociak, A., 2016. The influence of rapeseed oil-based polyols on the foaming proces of rigid polyurethane foams. Ind. Crops Prod. 89, 182-187, http://dx.doi.org/10.1016/j.indcrop.2016.05.016. otwiera się w nowej karcie
  34. Kurańska, M., Prociak, A., Kirpluks, M., Cabulis, U., 2015. Polyurethane-polyisocyanurate foams modified with hydroxyl derivatives of rapeseed oil. Ind. Crops Prod. 74, 849-857, http://dx.doi.org/10.1016/j.indcrop. 2015.06.006. otwiera się w nowej karcie
  35. Kurańska, M., Cabulis, U., Auguścik, M., Prociak, A., Ryszkowska, J., Kirpluks, M., 2016. Bio-based polyurethane-polyisocyanurate composites with an intumescent flame retardant. Polym. Degrad. Stab. 127, 11-19, http://dx.doi. org/10.1016/j.polymdegradstab.2016.02.005. otwiera się w nowej karcie
  36. Li, C., Luo, X., Li, T., Tong, X., Li, Y., 2014. Polyurethane foams based on crude glycerol-derived biopolyols: one-pot preparation of biopolyols with branched fatty acid ester chains and its effects on foam formation and properties. Polymer 55, 6529-6538, http://dx.doi.org/10.1016/j.polymer.2014.10.043. otwiera się w nowej karcie
  37. Luo, X., Hu, S., Zhang, X., Li, Y., 2013. Thermochemical conversion of crude glycerol to biopolyols for the production of polyurethane foams. Bioresour. Technol. 139, 323-329, http://dx.doi.org/10.1016/j.biortech.2013.04.011. otwiera się w nowej karcie
  38. Melero, J.A., Vicente, G., Paniagua, M., Morales, G., Muñoz, P., 2012. Etherification of biodiesel-derived glycerol with ethanol for fuel formulation over sulfonic modified catalysts. Bioresour. Technol. 103, 142-151, http://dx.doi.org/10. 1016/j.biortech.2011.09.105. otwiera się w nowej karcie
  39. Miyata, A., Tsutsui, T., Konga, N., Matsumoto, S., Ohkubo, K., 2012. Polyether polyol, hard polyurethane foam and their production methods. Patent EP2080778. otwiera się w nowej karcie
  40. Modesti, M., Lorenzetti, A., 2003. Improvement on fire behaviour of water blown PIR-PUR foams: use of an halogen-free flame retardant. Eur. Polym. J. 39, 263-268, http://dx.doi.org/10.1016/s0014-3057(02)00198-2. otwiera się w nowej karcie
  41. Mosiewicki, M.A., Dell'Arciprete, G.A., Aranguren, M.I., Marcovich, N.E., 2009. Polyurethane foams obtained from castor oil-based polyol and filled with wood flour. J. Compos. Mater. 43, 3057-3072, http://dx.doi.org/10.1177/ 0021998309345342. otwiera się w nowej karcie
  42. Nguyen, N., Demirel, Y., 2013. Economic analysis of biodiesel and glycerol carbonate production plant by glycerolysis. J. Sustain. Bioenergy Syst. 3, 209-216, http://dx.doi.org/10.4236/jsbs.2013.33029. otwiera się w nowej karcie
  43. Nik Siti, M.N.M.D., Idris, Z., Shoot, K.Y., Hassan, H.A., 2013. Preparation of polyglycerol from palm-biodiesel crude glycerin. J. Oil Palm Res. 25, 289-297. otwiera się w nowej karcie
  44. Pawlik, H., Prociak, A., 2012. Influence of palm oil-based polyol on the properties of flexible polyurethane foams. J. Polym. Environ. 20, 438-445, http://dx.doi.org/ 10.1007/s10924-011-0393-2. otwiera się w nowej karcie
  45. Petrov, K., Petrova, P., 2010. Enhanced production of 2,3-butanediol from glycerol by forced pH fluctuations. Appl. Microbiol. Biotechnol. 87, 943-949, http://dx. doi.org/10.1007/s00253-010-2545-z. otwiera się w nowej karcie
  46. Piszczyk Ł., Danowska M., Haponiuk J., Strankowski M., 2014. Sposób wytwarzania ekologicznych polioli z odpadu po transestryfikacji olejów roślinnych oraz sposób wytwarzania sztywnych pianek poliuretanowych. Patent application P.408610. otwiera się w nowej karcie
  47. Piszczyk, Ł., Strankowski, M., Danowska, M., Hejna, A., Haponiuk, J.T., 2014b. Rigid polyurethane foams from a polyglycerol-based polyol. Eur. Polym. J. 57, 143-150, http://dx.doi.org/10.1016/j.eurpolymj.2014.05.012. otwiera się w nowej karcie
  48. Pretsch, T., Jakob, I., Müller, W., 2009. Hydrolytic degradation and functional stability of a segmented shape memory poly(ester urethane). Polym. Degrad. Stab. 94, 61-73, http://dx.doi.org/10.1016/j.polymdegradstab.2008.10.012. otwiera się w nowej karcie
  49. Puri, M., Abraham, R.E., Barrow, C.J., 2012. Biofuel production: prospects, challenges and feedstock in Australia. Renew. Sustain. Energy Rev. 16, 6022-6031, http://dx.doi.org/10.1016/j.rser.2012.06.025. otwiera się w nowej karcie
  50. Qian, L., Feng, F., Tang, S., 2014. Bi-phase flame-retardant effect of hexa-phenoxy-cyclotriphosphazene on rigid polyurethane foams containing expandable graphite. Polymer 55, 95-101, http://dx.doi.org/10.1016/j. polymer.2013.12.015. otwiera się w nowej karcie
  51. Ragauskas, A.J., Williams, C.K., Davison, B.H., Britovsek, G., Cairney, J., Eckert, C.A., Frederick Jr., W.J., Hallett, J.P., Leak, D.J., Liotta, C.L., Mielenz, J.R., Murphy, R., Templer, R., Tschaplinski, T., 2006. The path forward for biofuels and biomaterials. Science 311, 484-489, http://dx.doi.org/10.1126/science. 1114736. otwiera się w nowej karcie
  52. Randall, D., Lee, S., 2002. The Polyurethanes Book. John Wiley & Sons, Ltd, New York. otwiera się w nowej karcie
  53. Salehpour, S., Dubé, M.A., 2011. Towards the sustainable production of higher-molecular-weight polyglycerol. Macromol. Chem. Phys. 212, 1284-1293, http://dx.doi.org/10.1002/macp.201100064. otwiera się w nowej karcie
  54. Salehpour, S., Dubé, M.A., 2012. Reaction monitoring of glycerol step-growth polymerization using ATR-FTIR spectroscopy. Macromol. React. Eng. 6, 85-92, http://dx.doi.org/10.1002/mren.201100071. otwiera się w nowej karcie
  55. Samborska-Skowron, R., Balas, A., 2003. Jakościowa identyfikacja pierścieni izocyjanurowych w elastomerach uretanowo-izocyjanurowych i w ich hydrolizatach. Polimery 48, 371-374. otwiera się w nowej karcie
  56. Schartel, B., Hull, T.R., 2007. Development of fire-retarded materials-interpretation of cone calorimeter data. Fire Mater. 31, 327-354, http://dx.doi.org/10.1002/fam.949. otwiera się w nowej karcie
  57. Scholz, V., da Silva, J.N., 2008. Prospects and risks of the use of castor oil as a fuel. Biomass Bioenergy 32, 95-100, http://dx.doi.org/10.1016/j.biombioe.2007.08. 004. otwiera się w nowej karcie
  58. Septevani, A.A., Evans, D.A.C., Chaleat, C., Martin, D.J., Annamalai, P.K., 2015. A systematic study substituting polyether polyol with palm kernel oil based polyester polyol in rigid polyurethane foam. Ind. Crops Prod. 66, 16-26, http:// dx.doi.org/10.1016/j.indcrop.2014.11.053. otwiera się w nowej karcie
  59. Singh, R.P., Heldman, D.R., 2013. Introduction to Food Engineering, 5th ed. Elsevier, Amsterdam. otwiera się w nowej karcie
  60. Somania, K.P., Kansaraa, S.S., Patelb, N.K., Rakshit, A.K., 2003. Castor oil based polyurethane adhesives for wood-to-wood bonding. Int. J. Adhes. Adhes. 23, 269-275, http://dx.doi.org/10.1016/S0143-7496(03)00044-7. otwiera się w nowej karcie
  61. Sormana, J.L., Meredith, J.C., 2004. High-throughput discovery of structure-mechanical property relationships for segmented poly(urethane-urea)s. Macromolecules 37, 2186-2195, http://dx.doi.org/10. 1021/ma035385v. otwiera się w nowej karcie
  62. Szycher, M., 1999. Szycher's Handbook of Polyurethanes, first ed. CRC Press, Boca Raton, Florida. Szymanowska-Powałowska, D., 2014. 1,3-Propanediol production from crude glycerol by Clostridium butyricum DSP1 in repeated batch. Electron. J. Biotechnol. 17, 322-328, http://dx.doi.org/10.1016/j.ejbt.2014.10.001. otwiera się w nowej karcie
  63. Tanaka, R., Hirose, S., Hatakeyama, H., 2008. Preparation and characterization of polyurethane foams using a palm oil-based polyol. Bioresour. Technol. 99, 3810-3816, http://dx.doi.org/10.1016/j.biortech.2007.07.007. otwiera się w nowej karcie
  64. Thompson, J.C., He, B.B., 2006. Characterization of crude glycerol from biodiesel production from multiple feedstocks. Appl. Eng. Agric. 22, 261-265, http://dx. doi.org/10.13031/2013.20272. otwiera się w nowej karcie
  65. Tong, X., Luo, X., Li, Y., 2015. Development of blend films from soy meal protein and crude glycerol-based waterborne polyurethane. Ind. Crops Prod. 67, 11-17, http://dx.doi.org/10.1016/j.indcrop.2014.12.063. otwiera się w nowej karcie
  66. Wirpsza, Z., Banasiak, S., 2012. Sposób wytwarzania oligoeteroli. Patent PL 210779. Wrześniewiska-Tosik, K., Zajchowski, S., Bryśkiewicz, A., Ryszkowska, J., 2014. Feathers as a flame-retardant in elastic polyurethane foam. Fibres Text. East. Eur. 22, 119-128. otwiera się w nowej karcie
  67. Yazdani, S.S., Gonzalez, R., 2007. Anaerobic fermentation of glycerol: a path to economic viability for the biofuels industry. Curr. Opin. Biotechnol. 18, 213-219, http://dx.doi.org/10.1016/j.copbio.2007.05.002. otwiera się w nowej karcie
  68. Zhang, L., Zhang, M., Zhou, Y., Hu, L., 2013. The study of mechanical behavior and flame retardancy of castor oil phosphate-based rigid polyurethane foam composites containing expanded graphite and triethyl phosphate. Polym. otwiera się w nowej karcie
  69. Degrad. Stab. 98, 2784-2794, http://dx.doi.org/10.1016/j.polymdegradstab. 2013.10.015. otwiera się w nowej karcie
  70. Zhang, L., Zhang, M., Hu, L., Zhou, Y., 2014. Synthesis of right polyurethane foams with castor oil-based flame retardant polyols. Ind. Crops Prod. 52, 380-388, http://dx.doi.org/10.1016/j.indcrop.2013.10.043. otwiera się w nowej karcie
  71. Zheng, X., Wang, G., Xu, W., 2014. Roles of organically-modified montmorilloniteand phosphorous flame retardant during the combustion of rigid polyurethanefoam. Polym. Degrad. Stab. 101, 32-39, http://dx.doi.org/10. 1016/j.polymdegradstab.2014.01.015. otwiera się w nowej karcie
  72. Zieleniewska, M., Leszczyński, M.K., Kurańska, M., Prociak, A., Szczepkowski, L., Krzyżowska, M., Ryszkowska, J., 2015. Preparation and characterisation of rigid polyurethane foams using a rapeseed oil-based polyol. Ind. Crops Prod. 74, 887-897, http://dx.doi.org/10.1016/j.indcrop.2015.05.081. otwiera się w nowej karcie
Weryfikacja:
Politechnika Gdańska

wyświetlono 266 razy

Publikacje, które mogą cię zainteresować

Meta Tagi