Triplet–Triplet Annihilation Upconverting Liposomes: Mechanistic Insights into the Role of Membranes in Two-Dimensional TTA-UC
Abstrakt
Triplet−triplet annihilation upconversion (TTA-UC) implemented in nanoparticle assemblies is of emerging interest in biomedical applications, including in drug delivery and imaging. As it is a bimolecular process, ensuring sufficient mobility of the sensitizer and annihilator to facilitate effective collision in the nanoparticle is key. Liposomes can provide the benefits of two-dimensional confinement and condensed concentration of the sensitizer and annihilator along with superior fluidity compared to other nanoparticle assemblies. They are also biocompatible and widely applied across drug delivery modalities. However, there are relatively few liposomal TTA-UC systems reported to date, so systematic studies of the influence of the liposomal environment onTTA-UC are currently lacking. Here, we report the first example of a BODIPY-based sensitizer TTA-UC system within liposomes and use this system to study TTA-UC generation and compare the relative intensity of the anti-Stokes signal for this system as a function of liposome composition and membrane fluidity. We report for the first time on time-resolved spectroscopic studies of TTA-UC in membranes. Nanosecond transient absorption data reveal the BODIPY-perylene dyad sensitizer has a long triplet lifetime in liposome with contributions from three triplet excited states, whose lifetimes are reduced upon coinclusion of the annihilator due to triplet−triplet energy transfer, to a greater extent than in solution.This indicates triplet energy transfer between the sensitizer and the annihilator is enhanced in the membrane system. Molecular dynamics simulations of the sensitizer and annihilator TTA collision complex in the membrane confirm the co-orientation of the pair within the membrane structure and that the persistence time of the bound complex exceeds the TTA kinetics. The relative intensity of the TTA-UC output across nine liposomal systems of different lipid compositions was explored to examine the influence of membrane viscosity on upconversion (UC). UC showed the highest relative intensity for the most fluidic membranes and the weakest intensity for highly viscous membranes. Overall, our study reveals that the co-orientation of the UC pair within the membrane is crucial for effective TTA-UC and that the intensity of the TTA-UC output can be tuned in liposomes by modifying their phase and fluidity. These new insights will aid in the design of liposomal TTA-UC systems for biomedicalapplications
Cytowania
-
0
CrossRef
-
0
Web of Science
-
0
Scopus
Autorzy (10)
Cytuj jako
Pełna treść
- Wersja publikacji
- Accepted albo Published Version
- DOI:
- Cyfrowy identyfikator dokumentu elektronicznego (otwiera się w nowej karcie) 10.1021/acsami.4c00990
- Licencja
- otwiera się w nowej karcie
Słowa kluczowe
Informacje szczegółowe
- Kategoria:
- Publikacja w czasopiśmie
- Typ:
- artykuły w czasopismach
- Opublikowano w:
-
ACS Applied Materials & Interfaces
nr 16,
strony 29324 - 29337,
ISSN: 1944-8244 - Język:
- angielski
- Rok wydania:
- 2024
- Opis bibliograficzny:
- Prabhakaran A., Jha K. K., Sia R. C., Arellano-Reyes R. A., Sarangi N. K., Kogut M., Guthmuller J., Czub J., Dietzek-Ivanšić B., Keyes T. E.: Triplet–Triplet Annihilation Upconverting Liposomes: Mechanistic Insights into the Role of Membranes in Two-Dimensional TTA-UC// ACS Applied Materials & Interfaces -Vol. 16,iss. 22 (2024), s.29324-29337
- DOI:
- Cyfrowy identyfikator dokumentu elektronicznego (otwiera się w nowej karcie) 10.1021/acsami.4c00990
- Źródła finansowania:
-
- Publikacja bezkosztowa
- Weryfikacja:
- Politechnika Gdańska
wyświetlono 76 razy
Publikacje, które mogą cię zainteresować
Triplet Formation and Triplet‐Triplet Annihilation Upconversion in Iodine Substituted Non‐Orthogonal BODIPY‐Perylene Dyads
- K. Kumar Jha,
- A. Prabhakaran,
- R. C. Sia
- + 8 autorów
BODIPY‐Perylene Charge Transfer Compounds; Sensitizers for Triplet‐Triplet Annihilation Up‐conversion
- R. A. Arellano-Reyes,
- A. Prabhakaran,
- R. C. Sia
- + 6 autorów
Mechanism of Binding of Antifungal Antibiotic Amphotericin B to Lipid Membranes: An Insight from Combined Single-Membrane Imaging, Microspectroscopy, and Molecular Dynamics
- E. Grela,
- M. Wieczór,
- R. Luchowski
- + 7 autorów
Triplet Formation and Triplet‐Triplet Annihilation Upconversion in Iodine Substituted Non‐Orthogonal BODIPY‐Perylene Dyads
- K. Jha,
- A. Prabhakaran,
- R. Sia
- + 9 autorów