ISSN:
eISSN:
Dyscypliny:
- inżynieria biomedyczna (Dziedzina nauk inżynieryjno-technicznych)
- inżynieria chemiczna (Dziedzina nauk inżynieryjno-technicznych)
- inżynieria materiałowa (Dziedzina nauk inżynieryjno-technicznych)
- inżynieria mechaniczna (Dziedzina nauk inżynieryjno-technicznych)
- biologia medyczna (Dziedzina nauk medycznych i nauk o zdrowiu)
- nauki farmaceutyczne (Dziedzina nauk medycznych i nauk o zdrowiu)
- nauki leśne (Dziedzina nauk rolniczych)
- biotechnologia (Dziedzina nauk ścisłych i przyrodniczych)
- nauki chemiczne (Dziedzina nauk ścisłych i przyrodniczych)
Punkty Ministerialne: Pomoc
Rok | Punkty | Lista |
---|---|---|
Rok 2025 | 200 | Ministerialna lista czasopism punktowanych 2024 |
Rok | Punkty | Lista |
---|---|---|
2025 | 200 | Ministerialna lista czasopism punktowanych 2024 |
2024 | 200 | Ministerialna lista czasopism punktowanych 2024 |
2023 | 200 | Lista ministerialna czasopism punktowanych 2023 |
2022 | 200 | Lista ministerialna czasopism punktowanych (2019-2022) |
2021 | 200 | Lista ministerialna czasopism punktowanych (2019-2022) |
2020 | 200 | Lista ministerialna czasopism punktowanych (2019-2022) |
2019 | 200 | Lista ministerialna czasopism punktowanych (2019-2022) |
2018 | 40 | A |
2017 | 40 | A |
2016 | 40 | A |
2015 | 40 | A |
2014 | 40 | A |
2013 | 40 | A |
2012 | 35 | A |
2011 | 35 | A |
Model czasopisma:
Punkty CiteScore:
Rok | Punkty |
---|---|
Rok 2023 | 16 |
Rok | Punkty |
---|---|
2023 | 16 |
2022 | 15.7 |
2021 | 14.4 |
2020 | 14 |
2019 | 13.6 |
2018 | 12.4 |
2017 | 11.3 |
2016 | 10.1 |
2015 | 8.4 |
2014 | 6.8 |
2013 | 6.4 |
2012 | 6.1 |
2011 | 4.1 |
Impact Factor:
Sherpa Romeo:
Prace opublikowane w tym czasopiśmie
Filtry
wszystkich: 40
Katalog Czasopism
Rok 2024
-
Application of the Heavy-Atom Effect for (Sub)microsecond Thermally Activated Delayed Fluorescence and an All-Organic Light-Emitting Device with Low-Efficiency Roll-off
PublikacjaThefeatureof abundantandenvironmentallyfriendlyheavyatoms(HAs)like bromineto acceleratespin-forbiddentransitionsin organicmoleculeshas beenknownforyears.In combinationwiththe easinessof incorporation,brominederivativesof organicemittersshowingthermallyactivateddelayedfluorescence(TADF)emergeas a cheapand efficientsolutionforthe slowreverseintersystemcrossing(rISC)problemin suchemittersand strongefficiencyroll-offof all-organiclight-emittingdiodes(OLEDs).Here,we...
-
Bioactivation of Konjac Glucomannan Films by Tannic Acid and Gluconolactone Addition
PublikacjaWound healing is a dynamic process that requires an optimal extracellular environment, as well as an accurate synchronization between various cell types. Over the past few years, great efforts have been devoted to developing novel approaches for treating and managing burn injuries, sepsis, and chronic or accidental skin injuries. Multifunctional smart-polymer-based dressings represent a promising approach to support natural healing...
-
Enhanced Mechanical and Electromechanical Properties of Compositionally Complex Zirconia Zr1–x(Gd1/5Pr1/5Nd1/5Sm1/5Y1/5)xO2−δ Ceramics
PublikacjaCompositionally complex oxides (CCOs) or high-entropy oxides (HEOs) are new multi-element oxides with unexplored physical and functional properties. In this work, we report fluorite structure derived compositionally complex zirconia with composition Zr1- x(Gd1/5Pr1/5Nd1/5Sm1/5Y1/5)xO2-δ (x = 0.1 and 0.2) synthesized in solid-state reaction route and sintered via hot pressing at 1350 °C. We explore the evolution of these oxides'...
-
Improving the Efficiency of Semitransparent Perovskite Solar Cell Using Down-Conversion Coating
PublikacjaPerovskite solar cells (PSCs) have demonstrated exceptional efficiency, yet surpassing theoretical performance limits requires innovative methodologies. Among these, down-conversion techniques are pivotal in reducing optical losses and enhancing energy conversion efficiency. In this study, optical modeling, including a generalized transfer-matrix optical model, was employed to meticulously assess optical losses in semitransparent...
-
Schottky Junction-Driven Photocatalytic Effect in Boron-Doped Diamond-Graphene Core–Shell Nanoarchitectures: An sp3/sp2 Framework for Environmental Remediation
PublikacjaSelf-formation of boron-doped diamond (BDD)-multilayer graphene (MLG) core–shell nanowalls (BDGNWs) via microwave plasma-enhanced chemical vapor deposition is systematically investigated. Here, the incorporation of nitrogen brings out the origin of MLG shells encapsulating the diamond core, resulting in unique sp3/sp2 hybridized frameworks. The evolution mechanism of the nanowall-like morphology with the BDD-MLG core–shell composition...
-
Tailoring Defects in B, N-Codoped Carbon Nanowalls for Direct Electrochemical Oxidation of Glyphosate and its Metabolites
PublikacjaTailoring the defects in graphene and its related carbon allotropes has great potential to exploit their enhanced electrochemical properties for energy applications, environmental remediation, and sensing. Vertical graphene, also known as carbon nanowalls (CNWs), exhibits a large surface area, enhanced charge transfer capability, and high defect density, making it suitable for a wide range of emerging applications. However, precise...
-
The Effect of Marginal Zn2+ Excess Released from Titanium Coating on Differentiation of Human Osteoblastic Cells
PublikacjaComposite coatings based on chitosan and zinc nanoparticles (ZnNPs) were successfully produced on Ti13Zr13Nb substrates by cathodic electrophoretic deposition (EPD). The unfavorable phenomenon of water electrolysis-induced nonuniformity was reduced by applying a low voltage (20 V) and a short deposition time (1 min). Surface analysis (roughness and hydrophilicity) reveals the potential of these coatings for enhancing cell attachment...
-
Triplet–Triplet Annihilation Upconverting Liposomes: Mechanistic Insights into the Role of Membranes in Two-Dimensional TTA-UC
Publikacja -
Triplet–Triplet Annihilation Upconverting Liposomes: Mechanistic Insights into the Role of Membranes in Two-Dimensional TTA-UC
PublikacjaTriplet−triplet annihilation upconversion (TTA-UC) implemented in nanoparticle assemblies is of emerging interest in biomedical applications, including in drug delivery and imaging. As it is a bimolecular process, ensuring sufficient mobility of the sensitizer and annihilator to facilitate effective collision in the nanoparticle is key. Liposomes can provide the benefits of two-dimensional confinement and condensed concentration...
Rok 2023
-
Diiodo-BODIPY Sensitizing of the [Mo3S13]2– Cluster for Noble-Metal-Free Visible-Light-Driven Hydrogen Evolution within a Polyampholytic Matrix
PublikacjaWe report on a photocatalytic setup that utilizes the organic photosensitizer (PS) diiodo-BODIPY and the non-precious-metal-based hydrogen evolution reaction (HER) catalyst (NH4)2[Mo3S13] together with a polyampholytic unimolecular matrix poly(dehydroalanine)-graft-poly(ethyleneglycol) (PDha-g-PEG) in aqueous media. The system shows exceptionally high performance with turnover numbers (TON > 7300) and turnover frequencies (TOF...
-
Dual-Setting Bone Cement Based On Magnesium Phosphate Modified with Glycol Methacrylate Designed for Biomedical Applications
PublikacjaMagnesium phosphate cement (MPC) is a suitable alternative for the currently used calcium phosphates, owing to beneficial properties like favorable resorption rate, fast hardening, and higher compressive strength. However, due to insufficient mechanical properties and high brittleness, further improvement is still expected. In this paper, we reported the preparation of a novel type of dual-setting cement based on MPC with poly(2-hydroxyethyl...
-
Insight into (Electro)magnetic Interactions within Facet-Engineered BaFe12O19/TiO2 Magnetic Photocatalysts
PublikacjaA series of facet-engineered TiO2/BaFe12O19 composites were synthesized through hydrothermal growth of both phases and subsequent deposition of the different, faceted TiO2 nanoparticles onto BaFe12O19 microplates. The well-defined geometry of the composite and uniaxial magnetic anisotropy of the ferrite allowed alternate interfaces between both phases and fixed the orientation between the TiO2 crystal structure and the remanent...
-
Laser-Induced Graphitization of Polydopamine on Titania Nanotubes
PublikacjaSince the discovery of laser-induced graphite/graphene, there has been a notable surge of scientific interest in advancing diverse methodologies for their synthesis and applications. This study focuses on the utilization of a pulsed Nd:YAG laser to achieve graphitization of polydopamine (PDA) deposited on the surface of titania nanotubes. The partial graphitization is corroborated through Raman and XPS spectroscopies and supported...
-
Spin-Resolved Band Structure of Hoffman Clathrate [Fe(pz)2Pt(CN)4] as an Essential Tool to Predict Optical Spectra of Metal–Organic Frameworks
PublikacjaParamount spin-crossover properties of the 3D-Hoffman metalorganic framework (MOF) [Fe(pz)2Pt(CN)4] are generally described on the basis of the ligand field theory, which provides adequate insight into theoretical and simulation analysis of spintronic complexes. However, the ligand field approximation does not take into account the 3D periodicity of the actual complex lattice and surface effects and therefore cannot predict a full-scale...
-
Unveiling the Electrocatalytic Activity of the GdBa0.5Sr0.5Co2–xCuxO5+δ (x ≥ 1) Oxygen Electrodes for Solid Oxide Cells
Publikacja
Rok 2022
-
Synthesis and Characterization of Size- and Charge-Tunable Silver Nanoparticles for Selective Anticancer and Antibacterial Treatment
Publikacja -
Tuning Electrochemical Performance by Microstructural Optimization of the Nanocrystalline Functional Oxygen Electrode Layer for Solid Oxide Cells
PublikacjaFurther development of solid oxide fuel cell (SOFC) oxygen electrodes can be achieved through improvements in oxygen electrode design by microstructure miniaturisation alongside nanomaterials implementation. In this work, improved electrochemical performance of an La0.6Sr0.4Co0.2Fe0.8O3-d (LSCF) cathode was achieved by the controlled modification of the La0.6Sr0.4CoO3-d (LSC) nanocrystalline interlayer introduced between a porous...
Rok 2021
-
Formation and Near-Infrared Emission of CsPbI3 Nanoparticles Embedded in Cs4PbI6 Crystals
Publikacja -
Influence of Annealing Atmospheres on Photoelectrochemical Activity of TiO2 Nanotubes Modified with AuCu Nanoparticles
PublikacjaIn this article, we studied the annealing process of AuCu layers deposited on TiO2 nanotubes (NTs) conducted in various atmospheres such as air, vacuum, argon, and hydrogen in order to obtain materials active in both visible and UV–vis ranges. The material fabrication route covers the electrochemical anodization of a Ti plate, followed by thin AuCu film magnetron sputtering and further thermal treatment. Scanning electron microscopy...
-
Near-Infrared-Triggered Nitrogen Fixation over Upconversion Nanoparticles Assembled Carbon Nitride Nanotubes with Nitrogen Vacancies
Publikacja -
Nitrogen-Incorporated Boron-Doped Nanocrystalline Diamond Nanowires for Microplasma Illumination
PublikacjaThe origin of nitrogen-incorporated boron-doped nanocrystalline diamond (NB-NCD) nanowires as a function of substrate temperature (Ts) in H2/CH4/B2H6/N2 reactant gases is systematically addressed. Because of Ts, there is a drastic modification in the dimensional structure and microstructure and hence in the several properties of the NB-NCD films. The NB-NCD films grown at low Ts (400 °C) contain faceted diamond grains. The morphology...
Rok 2020
-
Magnetization Reversal Mechanism in Exchange-Biased Spring-like Thin-Film Composite
Publikacja -
New Unsymmetrical Bisacridine Derivatives Noncovalently Attached to Quaternary Quantum Dots Improve Cancer Therapy by Enhancing Cytotoxicity toward Cancer Cells and Protecting Normal Cells
PublikacjaThe use of nanoparticles for the controlled drug delivery to cells has emerged as a good alternative to traditional systemic delivery. Quantum dots (QDs) offer potentially invaluable societal benefits such as drug targeting and in vivo biomedical imaging. In contrast, QDs may also pose risks to human health and the environment under certain conditions. Here, we demonstrated that unique combination of nanocrystals core components...
-
Scalable Route toward Superior Photoresponse of UV-Laser-Treated TiO2 Nanotubes
PublikacjaTitanium dioxide nanotubes gain considerable attention as a photoactive material due to chemical stability, photocorrosion resistance, or lowcost manufacturing method. This work presents scalable pulsed laser modification of TiO2 nanotubes resulting in enhanced photoactivity in a system equipped with a motorized table, which allows for modifications of both precisely selected and any-large sample area. Images obtained from scanning...
-
Thermally Stable and Deep Red Luminescence of Sr1–xBax[Mg2Al2N4]:Eu2+ (x = 0–1) Phosphors for Solid State and Agricultural Lighting Applications
Publikacja
Rok 2019
-
Boron doped Nanocrystalline Diamond-Carbon Nanospike Hybrid Electron Emission Source
PublikacjaElectron emission signifies an important mechanism facilitating the enlargement of devices that have modernized large parts of science and technology. Today, the search for innovative electron emission devices for imaging, sensing, electronics, and high-energy physics continues. Integrating two materials with dissimilar electronic properties into a hybrid material is an extremely sought-after synergistic approach envisioning a...
-
Size-Dependent in Vitro Biocompatibility and Uptake Process of Polymeric Carbon Nitride
Publikacja
Rok 2017
-
Aluminate Red Phosphor in Light-Emitting Diodes: Theoretical Calculations, Charge Varieties, and High-Pressure Luminescence Analysis
Publikacja -
Boron-Enhanced Growth of Micron-Scale Carbon-Based Nanowalls: A Route toward High Rates of Electrochemical Biosensing
PublikacjaIn this study, we have demonstrated the fabrication of novel materials called boron-doped carbon nanowalls (B:CNWs), which are characterized by remarkable electrochemical properties such as high standard rate constant (k°), low peak-to-peak separation value (ΔE) for the oxidation and reduction processes of the [Fe(CN)6]3–/4– redox system, and low surface resistivity. The B:CNW samples were deposited by the microwave plasma-assisted...
-
Exchange Bias in the [CoO/Co/Pd]10 Antidot Large Area Arrays
Publikacja -
Is the Solid Electrolyte Interphase an Extra-Charge Reservoir in Li-Ion Batteries?
PublikacjaAdvanced metal oxide electrodes in Li-ion batteries usually show reversible capacities exceeding the theoretically expected ones. Despite many studies and tentative interpretations, the origin of this extra-capacity is not assessed yet. Lithium storage can be increased through different chemical processes developing in the electrodes during charging cycles. The solid electrolyte interface (SEI), formed already during the first...
Rok 2016
-
Aluminum-TiO2 NPs Composites as Non-precious Catalysts for Efficient Electrochemical Generation of Hydrogen
PublikacjaIn this paper, we demonstrated, for the first time, aluminum titania nanoparticle (Al-TiO2 NP) composites with variable amounts of TiO2 NPs as nonprecious active catalysts for the electrochemical generation of H2. These materials were synthesized by mixing desired amounts of hydrogen titanate nanotubes (TNTs), fabricated here by a cost-effective approach at moderate hydrothermal conditions, with aluminum powder (purity 99.7%; size...
-
Enhance Color Rendering Index via Full Spectrum Employing the Important Key of Cyan Phosphor
Publikacja -
Influence of Superparamagnetism on Exchange Anisotropy at CoO/[Co/Pd] Interfaces
Publikacja -
Narrow Red Emission Band Fluoride Phosphor KNaSiF6:Mn4+ for Warm White Light-Emitting Diodes
Publikacja
Rok 2015
-
Inkjet Printing of Lanthanide–Organic Frameworks for Anti-Counterfeiting Applications
PublikacjaPhotoluminescent lanthanide−organic frameworks (Ln-MOFs) were printed onto plastic and paper foils with a conventional inkjet printer. Ln-MOF inks were used to reproduce color images that can only be observed under UV light irradiation. This approach opens a new window for exploring Ln-MOF materials in technological applications, such as optical devices (e.g., lab-on-a-chip), as proof of authenticity for official documents.
Rok 2013
Rok 2012
-
Magnetic Silica Nanotubes: Synthesis, Drug Release, and Feasibility for Magnetic Hyperthermia
Publikacja
Rok 2010
Rok 2003
-
Synthesis and ionophoric properties of functionalized p-tert-butyl-calix[4]arenes
PublikacjaProjektowanie struktury związków o właściwościach jonoforowych stanowi ważny element chemii supramolekularnej. W pracy przedstawiono wyniki badań nad funkcjonalizacją makrocyklicznych kaliks[4]arenów prowadzacą do nowych związków o zróżnicowanych właściwościach kompleksujących. Syntezowane przez nas jonofory badane były w membranowych elektrodach jonoselektywnych. Wyznaczono potencjometryczne współczynniki selektywności oraz stałe...
wyświetlono 5783 razy