dr hab. Paweł Niedziałkowski
Kontakt dla biznesu
- Lokalizacja
- Al. Zwycięstwa 27, 80-219 Gdańsk
- Telefon
- +48 58 348 62 62
- biznes@pg.edu.pl
Media społecznościowe
Kontakt
- Brak danych
Wybrane publikacje
-
Boron-Enhanced Growth of Micron-Scale Carbon-Based Nanowalls: A Route toward High Rates of Electrochemical Biosensing
In this study, we have demonstrated the fabrication of novel materials called boron-doped carbon nanowalls (B:CNWs), which are characterized by remarkable electrochemical properties such as high standard rate constant (k°), low peak-to-peak separation value (ΔE) for the oxidation and reduction processes of the [Fe(CN)6]3–/4– redox system, and low surface resistivity. The B:CNW samples were deposited by the microwave plasma-assisted...
-
Electrochemical performance of indium-tin-oxide-coated lossy-mode resonance optical fiber sensor
Analysis of liquids performed in multiple domain, e.g., optical and electrochemical (EC), has recently focus significant attention. Our previous works have shown that a simple device based on indium-tin-oxide (ITO) coated optical fiber core may be used for optical monitoring of EC processes. At satisfying optical properties and thickness of ITO a lossy-mode resonance (LMR) effect can be obtained and used for monitoring of optical...
-
Annealing of indium tin oxide (ITO) coated optical fibers for optical and electrochemical sensing purposes
Glass and fiber structures with Indium Tin Oxide (ITO) coating were subjected to annealing in order to identify impact of the thermal treatment on their optical and electrochemical properties. It is shown that the annealing process significantly modifies optical properties and thickness of the films, which are crucial for performance of optical fiber sensors. Moreover, it visibly improves electrochemical activity of ITO on glass...
wyświetlono 1091 razy