Wyniki wyszukiwania dla: CONVOLUTIONAL NETWORKS - MOST Wiedzy

Wyszukiwarka

Wyniki wyszukiwania dla: CONVOLUTIONAL NETWORKS

Najlepsze wyniki w katalogu: Potencjał Badawczy Pokaż wszystkie wyniki (28)

Wyniki wyszukiwania dla: CONVOLUTIONAL NETWORKS

  • Zespół Inżynierii Biomedycznej

    Potencjał Badawczy

    Inżynieria biomedyczna stanowi nową interdyscyplinarną dziedzinę wiedzy zlokalizowaną na pograniczu nauk technicznych, medycznych i biologicznych. Według opinii WHO (World Health Organization) można ją zaliczyć do głównych (obok inżynierii genetycznej) czynników decydujących o postępie współczesnej medycyny. Rosnące znaczenie kształcenia w zakresie INŻYNIERII BIOMEDYCZNEJ wynika z faktu, że specjaliści tej dyscypliny są potrzebni...

  • Zespół Sieci Teleinformacyjnych

    Potencjał Badawczy

    Dzisiejsza telekomunikacja przechodzi bardzo szybkie i radykalne zmiany wynikające nie tylko z szybkiego postępu technologicznego ale też z potrzeb społeczeństwa informacyjnego. Informacja stała się dobrem, które ma istotny wpływ na kierunek i szybkość zmian kulturowych i materialnych w globalizującym się świecie. Zatem wyzwania, jakie stoją przed telekomunikacją, a tym samym wobec każdego, kto zajmuje się i planuje działać w tym...

  • Zespół Systemów Multimedialnych

    Potencjał Badawczy

    * technologie archiwizacji, rekonstrukcji i dostępu do nagrań archiwalnych * technologie inteligentnego monitoringu wizyjnego i akustycznego * multimedialne technologie telemedyczne * multimodalne interfejsy komputerowe

Najlepsze wyniki w katalogu: Oferta Biznesowa Pokaż wszystkie wyniki (3)

Wyniki wyszukiwania dla: CONVOLUTIONAL NETWORKS

Pozostałe wyniki Pokaż wszystkie wyniki (127)

Wyniki wyszukiwania dla: CONVOLUTIONAL NETWORKS

  • Characterizing the Scalability of Graph Convolutional Networks on Intel® PIUMA

    Publikacja
    • M. J. Adiletta
    • J. J. Tithi
    • E. Farsarakis
    • G. Gerogiannis
    • R. Adolf
    • R. Benke
    • S. Kashyap
    • S. Hsia
    • K. Lakhotia
    • F. Petrini... i 2 innych

    - Rok 2023

    Large-scale Graph Convolutional Network (GCN) inference on traditional CPU/GPU systems is challenging due to a large memory footprint, sparse computational patterns, and irregular memory accesses with poor locality. Intel’s Programmable Integrated Unffied Memory Architecture (PIUMA) is designed to address these challenges for graph analytics. In this paper, a detailed characterization of GCNs is presented using the Open-Graph Benchmark...

    Pełny tekst do pobrania w serwisie zewnętrznym

  • Performance Analysis of Convolutional Neural Networks on Embedded Systems

    Publikacja

    - Rok 2020

    Machine learning is no longer confined to cloud and high-end server systems and has been successfully deployed on devices that are part of Internet of Things. This paper presents the analysis of performance of convolutional neural networks deployed on an ARM microcontroller. Inference time is measured for different core frequencies, with and without DSP instructions and disabled access to cache. Networks use both real-valued and...

    Pełny tekst do pobrania w serwisie zewnętrznym

  • Clothes Detection and Classification Using Convolutional Neural Networks

    Publikacja

    In this paper we describe development of a computer vision system for accurate detection and classification of clothes for e-commerce images. We present a set of experiments on well established architectures of convolutional neural networks, including Residual networks, SqueezeNet and Single Shot MultiBox Detector (SSD). The clothes detection network was trained and tested on DeepFashion dataset, which contains box annotations...

    Pełny tekst do pobrania w serwisie zewnętrznym

  • Architectural Modifications to Enhance Steganalysis with Convolutional Neural Networks

    Publikacja

    This paper investigates the impact of various modifications introduced to current state-of-the-art Convolutional Neural Network (CNN) architectures specifically designed for the steganalysis of digital images. Usage of deep learning methods has consistently demonstrated improved results in this field over the past few years, primarily due to the development of newer architectures with higher classification accuracy compared to...

    Pełny tekst do pobrania w serwisie zewnętrznym

  • Abdominal Aortic Aneurysm segmentation from contrast-enhanced computed tomography angiography using deep convolutional networks

    Publikacja
    • T. Dziubich
    • P. Białas
    • Ł. Znaniecki
    • J. Halman
    • J. Brzeziński

    - Rok 2020

    One of the most common imaging methods for diagnosing an abdominal aortic aneurysm, and an endoleak detection is computed tomography angiography. In this paper, we address the problem of aorta and thrombus semantic segmentation, what is a mandatory step to estimate aortic aneurysm diameter. Three end-to-end convolutional neural networks were trained and evaluated. Finally, we proposed an ensemble of deep neural networks with underlying...

    Pełny tekst do pobrania w serwisie zewnętrznym