Filtry
wszystkich: 8
Najlepsze wyniki w katalogu: Potencjał Badawczy Pokaż wszystkie wyniki (7)
Wyniki wyszukiwania dla: EXPLAINABLE AI
-
Katedra Automatyki i Energetyki
Potencjał BadawczyMikroprocesorowe urządzenia pomiarowo-rejestrujące i systemy monitorowania wykorzystujące technologie sieciowe, systemy sterowania urządzeniami i procesami technologicznymi. Systemy sterowania w obiektach energetyki odnawialnej, skupionych i rozproszonych. Modelowanie i symulacja obiektów dynamicznych, procesów oraz systemów sterowania i kontroli; projektowanie interfejsów operatorskich. Systemy elektroenergetyczne i automatyki...
-
Katedra Elektrotechniki, Systemów Sterowania i Informatyki
Potencjał BadawczyW Katedrze Elektrotechniki, Systemów Sterowania i Informatyki prowadzone są badania w tematyce podstaw elektrotechniki, zaawansowanych systemów sterowania, prototypowania dedykowanych rozwiązań sprzętowych w FPGA. Prowadzone badania skupiają się również na wykorzystaniu zaawansowanych technik analizy komputerowej w systemach sterowania oraz elektrotechniki.
-
Zespół Algorytmów i Modelowania Systemów
Potencjał BadawczyStudiowanie problemów i modeli teoriografowych ma na celu badanie złożoności obliczeniowej uogólnień problemu klasycznego kolorowania wierzchołków i krawędzi grafu znajdujących zastosowania w modelowaniu praktycznych problemów oraz badanie nowych miar oceny skuteczności algorytmów. W zakresie szeregowania zadań badania koncentrują się na konstrukcji harmonogramów optymalnych z punktu widzenia długości harmonogramu i średniego czasu...
Najlepsze wyniki w katalogu: Oferta Biznesowa Pokaż wszystkie wyniki (1)
Wyniki wyszukiwania dla: EXPLAINABLE AI
-
Laboratorium Badawcze 2-3
Oferta BiznesowaObliczenia komputerowe wymagające dużych mocy obliczeniowych z wykorzystaniem oprogramowania typu: Matlab, Tomlab, Gams, Apros.
Pozostałe wyniki Pokaż wszystkie wyniki (10)
Wyniki wyszukiwania dla: EXPLAINABLE AI
-
Explainable AI for Inspecting Adversarial Attacks on Deep Neural Networks
PublikacjaDeep Neural Networks (DNN) are state of the art algorithms for image classification. Although significant achievements and perspectives, deep neural networks and accompanying learning algorithms have some important challenges to tackle. However, it appears that it is relatively easy to attack and fool with well-designed input samples called adversarial examples. Adversarial perturba-tions are unnoticeable for humans. Such attacks...
-
Olgun Aydin dr
OsobyOlgun Aydin finished his PhD by publishing a thesis about Deep Neural Networks. He works as a Principal Machine Learning Engineer in Nike, and works as Assistant Professor in Gdansk University of Technology in Poland. Dr. Aydin is part of editorial board of "Journal of Artificial Intelligence and Data Science" Dr. Aydin served as Vice-Chairman of Why R? Foundation and is member of Polish Artificial Intelligence Society. Olgun is...
-
Improving the prediction of biochar production from various biomass sources through the implementation of eXplainable machine learning approaches
PublikacjaExamining the game-changing possibilities of explainable machine learning techniques, this study explores the fast-growing area of biochar production prediction. The paper demonstrates how recent advances in sensitivity analysis methodology, optimization of training hyperparameters, and state-of-the-art ensemble techniques have greatly simplified and enhanced the forecasting of biochar output and composition from various biomass...
-
From Data to Decision: Interpretable Machine Learning for Predicting Flood Susceptibility in Gdańsk, Poland
PublikacjaFlood susceptibility prediction is complex due to the multifaceted interactions among hydrological, meteorological, and urbanisation factors, further exacerbated by climate change. This study addresses these complexities by investigating flood susceptibility in rapidly urbanising regions prone to extreme weather events, focusing on Gdańsk, Poland. Three popular ML techniques, Support Vector Machine (SVM), Random Forest (RF), and...
-
Sylwia Majchrowska
Osoby