Wyniki wyszukiwania dla: INTERPRETABILITY - MOST Wiedzy

Wyszukiwarka

Wyniki wyszukiwania dla: INTERPRETABILITY

Najlepsze wyniki w katalogu: Potencjał Badawczy Pokaż wszystkie wyniki (7)

Wyniki wyszukiwania dla: INTERPRETABILITY

  • Katedra Automatyki i Energetyki

    Potencjał Badawczy

    Mikroprocesorowe urządzenia pomiarowo-rejestrujące i systemy monitorowania wykorzystujące technologie sieciowe, systemy sterowania urządzeniami i procesami technologicznymi. Systemy sterowania w obiektach energetyki odnawialnej, skupionych i rozproszonych. Modelowanie i symulacja obiektów dynamicznych, procesów oraz systemów sterowania i kontroli; projektowanie interfejsów operatorskich. Systemy elektroenergetyczne i automatyki...

  • Katedra Zarządzania

    Potencjał Badawczy

    * zarządzanie wiedzą i informacją * zarządzanie strategiczne w wyższych uczelniach * wykorzystywanie metod nieparametrycznych do pomiaru efektywności systemów szkolnictwa wyższego * modele biznesowe w zarządzaniu organizacjami * zarządzanie procesem innowacyjnym w MŚP * strategia i modele biznesu współczesnego przedsiębiorstwa * społeczeństwo informacyjne i jego wskaźniki rozwoju * zarządzanie morskimi portami jachtowymi 2 gospodarce...

  • Zespół Algorytmów i Modelowania Systemów

    Studiowanie problemów i modeli teoriografowych ma na celu badanie złożoności obliczeniowej uogólnień problemu klasycznego kolorowania wierzchołków i krawędzi grafu znajdujących zastosowania w modelowaniu praktycznych problemów oraz badanie nowych miar oceny skuteczności algorytmów. W zakresie szeregowania zadań badania koncentrują się na konstrukcji harmonogramów optymalnych z punktu widzenia długości harmonogramu i średniego czasu...

Najlepsze wyniki w katalogu: Oferta Biznesowa Pokaż wszystkie wyniki (1)

Wyniki wyszukiwania dla: INTERPRETABILITY

Pozostałe wyniki Pokaż wszystkie wyniki (10)

Wyniki wyszukiwania dla: INTERPRETABILITY

  • Adding Interpretability to Neural Knowledge DNA

    Publikacja

    - CYBERNETICS AND SYSTEMS - Rok 2022

    This paper proposes a novel approach that adds the interpretability to Neural Knowledge DNA (NK-DNA) via generating a decision tree. The NK-DNA is a promising knowledge representation approach for acquiring, storing, sharing, and reusing knowledge among machines and computing systems. We introduce the decision tree-based generative method for knowledge extraction and representation to make the NK-DNA more explainable. We examine...

    Pełny tekst do pobrania w portalu

  • Towards trustworthy multi‐modal motion prediction: Holistic evaluation and interpretability of outputs

    Publikacja
    • S. Carrasco
    • S. Majchrowska
    • J. Johnander
    • C. Petersson
    • M. Sotelo
    • D. Fernández

    - CAAI Transactions on Intelligence Technology - Rok 2023

    Pełny tekst do pobrania w serwisie zewnętrznym

  • Platelet RNA Sequencing Data Through the Lens of Machine Learning

    Publikacja

    - Cancers - Rok 2023

    Liquid biopsies offer minimally invasive diagnosis and monitoring of cancer disease. This biosource is often analyzed using sequencing, which generates highly complex data that can be used using machine learning tools. Nevertheless, validating the clinical applications of such methods is challenging. It requires: (a) using data from many patients; (b) verifying potential bias concerning sample collection; and (c) adding interpretability...

    Pełny tekst do pobrania w portalu

  • Towards Cancer Patients Classification Using Liquid Biopsy

    Liquid biopsy is a useful, minimally invasive diagnostic and monitoring tool for cancer disease. Yet, developing accurate methods, given the potentially large number of input features, and usually small datasets size remains very challenging. Recently, a novel feature parameterization based on the RNA-sequenced platelet data which uses the biological knowledge from the Kyoto Encyclopedia of Genes and Genomes, combined with a classifier...

    Pełny tekst do pobrania w serwisie zewnętrznym

  • Physics augmented classification of fNIRS signals

    Publikacja
    • F. Orihuela-Espina
    • M. Rojas-Cisneros
    • S. A. Montero-Hernández
    • J. S. Garcia Salinas
    • B. Cuervo-Soto
    • J. Herrera-Vega

    - Rok 2022

    Background. Predictive classification favours performance over semantics. In traditional predictive classification pipelines, feature engineering is often oblivious to the underlying phenomena. Hypothesis. In applied domains such as functional Near Infrared Spectroscopy (fNIRS), the exploitation of physical knowledge may improve the discriminative quality of our observation set. Aims. Give exemplary evidence that intervening the...

    Pełny tekst do pobrania w serwisie zewnętrznym