Wyniki wyszukiwania dla: sztuczne sieci neuronowe - MOST Wiedzy

Wyszukiwarka

Wyniki wyszukiwania dla: sztuczne sieci neuronowe

Najlepsze wyniki w katalogu: Potencjał Badawczy Pokaż wszystkie wyniki (89)

Wyniki wyszukiwania dla: sztuczne sieci neuronowe

  • Katedra Automatyki i Energetyki

    Potencjał Badawczy

    Mikroprocesorowe urządzenia pomiarowo-rejestrujące i systemy monitorowania wykorzystujące technologie sieciowe, systemy sterowania urządzeniami i procesami technologicznymi. Systemy sterowania w obiektach energetyki odnawialnej, skupionych i rozproszonych. Modelowanie i symulacja obiektów dynamicznych, procesów oraz systemów sterowania i kontroli; projektowanie interfejsów operatorskich. Systemy elektroenergetyczne i automatyki...

  • Zespół Systemów Multimedialnych

    Potencjał Badawczy

    * technologie archiwizacji, rekonstrukcji i dostępu do nagrań archiwalnych * technologie inteligentnego monitoringu wizyjnego i akustycznego * multimedialne technologie telemedyczne * multimodalne interfejsy komputerowe

  • Katedra Elektrotechniki, Systemów Sterowania i Informatyki

    W Katedrze Elektrotechniki, Systemów Sterowania i Informatyki prowadzone są badania w tematyce podstaw elektrotechniki, zaawansowanych systemów sterowania, prototypowania dedykowanych rozwiązań sprzętowych w FPGA. Prowadzone badania skupiają się również na wykorzystaniu zaawansowanych technik analizy komputerowej w systemach sterowania oraz elektrotechniki.

Najlepsze wyniki w katalogu: Oferta Biznesowa Pokaż wszystkie wyniki (25)

Wyniki wyszukiwania dla: sztuczne sieci neuronowe

Pozostałe wyniki Pokaż wszystkie wyniki (2486)

Wyniki wyszukiwania dla: sztuczne sieci neuronowe

  • Sztuczne sieci neuronowe modelem wczesnego ostrzegania

    Publikacja

    - Rok 2005

    W rozdziale tym autor przedstawił wyniki swoich badań nad wykorzystaniem sztucznych sieci neuronowych do prognozowania zagrożenia upadłością polskich firm produkcyjnych.Głównym celem było porównanie skuteczności przewidywania zagrożeń upadłością polskich przedsiębiorstw przy pomocy modelu sztucznych sieci neuronowych i tradycyjnego modelu analizy dyskryminacyjnej.

  • Wzorzec poprawnej pracy wymienników regeneracyjnych oparty o sztuczne sieci neuronowe

    Publikacja

    Artykuł opisuje probę stworzenia wzorca poprawnej pracy wymiennikow regeneracyjnych silowni turbo parowej o mocy 20mw przy pomocy sztucnych sieci neurnowych (SSN). Stworzony model pracy wymienników w zmiennych warunkachruchu silowni może zostać wykorzystany do diagnostki tych wlasnie urządzeń jaki i również do diagnostyki calego systemu silowni turbo parowej. Model neuronowy ma zastapic skomplikowane i czasochlonne obliczenia bilansowe...

  • Sztuczne sieci neuronowe oraz metoda wektorów wspierających w bankowych systemach informatycznych

    W artykule zaprezentowano wybrane metod sztucznej inteligencji do zwiększania efektywności bankowych systemów informatycznych. Wykorzystanie metody wektorów wspierających czy sztucznych sieci neuronowych w połączeniu z nowoczesną technologią mikroprocesorową umożliwia znaczący wzrost konkurencyjności banku poprzez dodanie nowych funkcjonalności. W rezultacie możliwe jest także złagodzenie skutków kryzysu finansowego.

    Pełny tekst do pobrania w portalu

  • Rozdział 4. Cieplno-przepływowe relacje diagnostyczne ustabilizowanych cieplnie bloków energetycznych wykorzystujące sztuczne sieci neuronowe (SSN)

    Publikacja

    - Rok 2007

    Podano przykłady relacji diagnostycznych budowanych dla bloków energetycznych pracujących w warunkach stabilizacji cieplnej. Należą one do metod off-line. Dobrze sprawdzają się w nich sztuczne sieci neuronowe. Przy modułowej strukturze relacji diagnostycznych wykorzystywane są z powodzeniem SSN zarówno z ciągłymi jak i skokowymi funkcjami przejścia, w zależności od oczekiwanego wyniku obliczeń neuronowych.

  • Nieświadome sieci neuronowe

    Publikacja

    - Rok 2022

    Coraz większą popularność zyskuje usługa predykcji za pomocą sieci neuronowych. Model ten zakłada istnienie serwera, który za pomocą wyuczonej sieci neuronowej dokonuje predykcji na danych otrzymanych od klienta. Model ten jest wygodny, ponieważ obie strony mogą skupić się na rozwoju w swojej specjalizacji. Wystawia on jednak na ryzyko utraty prywatności zarówno klienta, wysyła- jącego wrażliwe dane wejściowe, jak i serwer, udostępniający...

    Pełny tekst do pobrania w serwisie zewnętrznym