Umesh Kalathiya
Zatrudnienie
Kontakt dla biznesu
- Lokalizacja
- Al. Zwycięstwa 27, 80-219 Gdańsk
- Telefon
- +48 58 348 62 62
- biznes@pg.edu.pl
Kontakt
- umesh.kalathiya@pg.edu.pl
Wybrane publikacje
-
Structural, functional, and stability change predictions in human telomerase upon specific point mutations,
Overexpression of telomerase is one of the hallmarks of human cancer. Telomerase is important for maintaining the integrity of the ends of chromosomes, which are called telomeres. A growing number of human disease syndromes are associated with organ failure caused by mutations in telomerase (hTERT or hTR). Mutations in telomerase lead to telomere shortening by decreasing the stability of the telomerase complex, reducing its accumulation,...
-
Structure-based design and evaluation of novel N-phenyl-1H-indol-2-amine derivatives for fat mass and obesity-associated (FTO) protein inhibition
Fat mass and obesity-associated (FTO) protein contributes to non-syndromic human obesity which refers to excessive fat accumulation in human body and results in health risk. FTO protein has become a promising target for anti-obesity medicines as there is an immense need for the rational design of potent inhibitors to treat obesity. In our study, a new scaffold N-phenyl-1H-indol-2-amine was selected as a base for FTO protein inhibitors...
-
Structural and dynamic insights on the EmrE protein with TPP+ and related substrates through molecular dynamics simulations
EmrE is a bacterial transporter protein that forms an anti-parallel homodimer with four transmembrane helices in each monomer. EmrE transports positively charged aromatic compounds, such as TPP+ and its derivatives. We performed molecular dynamics (MD) simulations of EmrE in complex with TPP+, MeTPP+, and MBTPP+ embedded in a membrane. The detailed molecular properties and interactions were analysed for all EmrE-ligand complexes....
wyświetlono 834 razy