Publikacje
Filtry
wszystkich: 185
Katalog Publikacji
Rok 2016
-
On Reduced-Cost Design-Oriented Constrained Surrogate Modeling of Antenna Structures
PublikacjaDesign of contemporary antenna structures heavily relies on full-wave electromagnetic (EM) simulation models. Such models are essential to ensure reliability of evaluating antenna characteristics, yet, they are computationally expensive and therefore unsuitable for handling tasks that require multiple analyses, e.g., parametric optimization. The cost issue can be alleviated by using fast surrogate models. Conventional data-driven...
-
Patch size setup and performance/cost trade-offs in multi-objective antenna optimization using domain patching technique
PublikacjaA numerical study concerning multi-objective optimization of antenna structures using sequential domain patching (SDP) technique has been presented. We investigate the effect of various setups of the patch size on the operation of the SDP algorithm and possible trade-offs concerning the quality of the Pareto set found by SDP and the computational cost of the optimization process. Our considerations are illustrated using a UWB monopole...
-
Rapid EM-driven antenna dimension scaling through inverse modeling
PublikacjaIn this letter, a computationally feasible technique for dimension scaling of antenna structures is introduced. The proposed methodology is based on inverse surrogate modeling where the geometry parameters of the antenna structure of interest are explicitly related to the operating frequency. The surrogate model is identified based on a few antenna designs optimized for selected reference frequencies. For the sake of computational...
-
Rapid multi-objective antenna design using point-by-point Pareto set identification and local surrogate models
PublikacjaAntenna design is inherently a multicriterial problem.Determination of the best possible tradeoffs between conflicting objectives (a so-called Pareto front), such as reflection response, gain, and antenna size, is indispensable from the designer’s point of view, yet challenging when high-fidelity electromagnetic (EM) simulations are utilized for performance evaluation. Here, a novel and computationally...
-
Rapid multi-objective design optimization of miniaturized impedance transformer by Pareto front exploration
PublikacjaFast multi-objective optimization of compact impedance transformer is discussed. A set of alternative designs representing possible trade-offs between conflicting design criteria, i.e., electrical performance (here, wideband matching) and the structure size, is obtained through Pareto front exploration by means of surrogate-assisted methods.
-
Rapid simulation-driven design of miniaturised dual-band microwave couplers by means of adaptive response scaling
PublikacjaOne of the major challenges in the design of compact microwave structures is the necessity of simultaneous handling of several objectives and the fact that expensive electromagnetic (EM) analysis is required for their reliable evaluation. Design of multi-band circuits where performance requirements are to be satisfied for several frequencies at the same time is even more difficult. In this work, a computationally efficient design...
-
Rapid surrogate-assisted statistical analysis of compact microstrip couplers
PublikacjaIn this paper, a technique for low-cost statistical analysis and yield estimation of compact microwave couplers has been presented. The analysis is executed at the level of a fast surrogate model representing selected characteristic points of the coupler response that are critical to determine satisfaction/violation of the prescribed design specifications. Because of less nonlinear dependence of the characteristic points on geometry...
-
Response features for fast EM-driven design of miniaturized impedance matching transformers
PublikacjaA framework for low-cost EM-driven design optimization of compact impedance matching transformers is presented. Our technique is based on a bottom-up design where design requirements for the transformer circuit are translated into specifications for its building blocks. These elementary cells are optimized using response features. Subsequently, the entire circuit is fine-tuned using local response surface approximation models and...
-
Scalability of surrogate-assisted multi-objective optimization of antenna structures exploiting variable-fidelity electromagnetic simulation models
PublikacjaMulti-objective optimization of antenna structures is a challenging task due to high-computational cost of evaluating the design objectives as well as large number of adjustable parameters. Design speedup can be achieved by means of surrogate-based optimization techniques. In particular, a combination of variable-fidelity electromagnetic (EM) simulations, design space reduction techniques, response surface approximation (RSA) models,...
-
Simulation-driven design of compact ultra-wideband antenna structures
PublikacjaPurpose–The purpose of this paper is to investigate strategies and algorithms for expedited designoptimization and explicit size reduction of compact ultra-wideband (UWB) antennas.Design/methodology/approach–Formulation of the compact antenna design problem aiming atexplicit size reduction while maintaining acceptable electrical performance is presented. Algorithmicframeworks are described suitable for handling various design situations...
-
Size-Reduction-Oriented Design of Compact CPW-Fed UWB Monopole Antenna
PublikacjaA structure and design optimization of compact CPW-fed UWB monopole antenna is presented. Explicit size reduction through constrained numerical optimization of all relevant geometry parameters of the structure leads to a very small footprint of only 321 mm2. At the same time, a very wide antenna bandwidth is achieved from 3.1 GHz to 17 GHz.
-
Strategies for computationally feasible multi-objective simulation-driven design of compact RF/microwave components
PublikacjaMulti-objective optimization is indispensable when possible trade-offs between various (and usually conflicting) design objectives are to be found. Identification of such design alternatives becomes very challenging when performance evaluation of the structure/system at hand is computationally expensive. Compact RF and microwave components are representative examples of such a situation: due to highly compressed layouts and considerable...
Rok 2015
-
Accelerated simulation-driven design optimisation of compact couplers by means of two-level space mapping
PublikacjaIn this study, the authors discuss a robust and efficient technique for rapid design of compact couplers. The approach exploits two-level space mapping (SM) correction of an equivalent circuit model of the coupler structure under design. The first SM layer (local correction) is utilised to ensure good matching between the equivalent circuit and the electromagnetic model at the component level. Subsequent global correction allows...
-
Design of a Planar UWB Dipole Antenna with an Integrated Balun Using Surrogate-Based Optimization
PublikacjaA design of an ultra-wideband (UWB) antenna with an integrated balun is presented. A fully planar balun configuration interfacing the microstrip input of the structure to the coplanar stripline (CPS) input of the dipole antenna is introduced. The electromagnetic (EM) model of the structure of interest includes the dipole, the balun, and the microstrip input to account for coupling and radiation effects over the UWB band. The EM...
-
Efficient Multi-Fidelity Design Optimization of Microwave Filters Using Adjoint Sensitivity
PublikacjaA simple and robust algorithm for computationally efficient design optimiza-tion of microwave filters is presented. Our approach exploits a trust-region (TR)-based algorithm that utilizes linear approximation of the filter response obtained using adjoint sensitivity. The algorithm is sequentially executed on a family of electromagnetic (EM)-simulated models of different fidelities, starting from a coarse-discretization one, and...
-
Expedited Geometry Scaling of Compact Microwave Passives by Means of Inverse Surrogate Modeling
PublikacjaIn this paper, the problem of geometry scaling of compact microwave structures is investigated. As opposed to conventional structures (i.e., constructed using uniform transmission lines), re-design of miniaturized circuits (e.g., implemented with artificial transmission lines, ATSs) for different operating frequencies is far from being straightforward due to considerable cross-couplings between the circuit components. Here, we...
-
Fast EM-driven size reduction of antenna structures by means of adjoint sensitivities and trust regions
PublikacjaIn this letter, a simple yet robust and computationally efficient optimization technique for explicit size reduction of antenna structures is presented. Our approach directly handles the antenna size as the main design objective, while ensuring satisfactory electrical performance by means of suitably defined penalty functions. For the sake of accuracy, the antenna structure is evaluated using high-fidelity EM simulation. In order...
-
Fast Multi-Objective Antenna Optimization Using Sequential Patching and Variable-Fidelity EM Models
PublikacjaIn this work, a technique for fast multi-objective design optimization of antenna structures is presented. In our approach, the initial approximation of the Pareto set representing the best possible trade-offs between conflicting design objectives is obtained by means of sequential patching of the design space. The latter is a stencil-based search that aims at creating a path that connects the extreme Pareto-optimal designs (obtained...
-
Fast Multi-Objective Optimization of Narrow-Band Antennas Using RSA Models and Design Space Reduction
PublikacjaComputationally efficient technique for multi-objective design optimization of narrow-band antennas is presented. In our approach, the corrected low-fidelity antenna model (obtained through coarse-discretization EM simulations) is enhanced using frequency scaling and response correction, sampled, and utilized to obtain a fast response surface approximation (RSA) antenna surrogate. The RSA model is constructed in the reduced design space....
-
Multi-Objective Design Optimization of Compact Quasi-Isotropic Dielectric Resonator Antenna
PublikacjaMulti-objective optimization of a quasi-isotropic dielectric resonator antenna (DRA) is presented. Utilization of variable-fidelity electromagnetic (EM) DRA models, response surface approximations, and response correction techniques, allows us to obtain—at a low computational cost—a set of alternative antenna designs representing the best possible trade-offs between three conflicting objectives: antenna size, its reflection response,...
-
On the low-cost design of abbreviated multisection planar matching transformer
PublikacjaA numerically demanding wideband matching transformer composed of three nonuniform transmission lines (NUTLs) has been designed and optimized at a low computational cost. The computational feasibility of the design has been acquired through the exploitation of low-fidelity NUTL models in most steps of the design procedure and an implicit space mapping optimization engine, providing high accuracy results with only a handful of EM...
-
Rapid multi-objective simulation-driven design of compact microwave circuits
PublikacjaA methodology for rapid multi-objective design of compact microwave circuits is proposed. Our approach exploits point-by-point Pareto set identification using surrogate-based optimization techniques, auxiliary equivalent circuit models, and space mapping as the major model correction method. The proposed technique is illustrated and validated through the design of a compact rat-race coupler. A set of ten designs being trade-offs...
-
Rotational Design Space Reduction for Cost-Efficient Multi-Objective Antenna Optimization
PublikacjaCost-efficient multi-objective design of antenna structures is presented. Our approach is based on design space reduction algorithm using auxiliary single-objective optimization runs and coordinate system rotation. The initial set of Pareto-optimal solutions is obtained by optimizing a response surface approximation model established in the reduced space using coarse-discretization EM simulation data. The optimization engine is...
-
Structure and computationally-efficient simulation-driven design of compact UWB monopole antenna
PublikacjaIn this letter, a structure of a small ultra-wideband (UWB) monopole antenna, its design optimization procedure as well as experimental validation are presented. According to our approach, antenna compactness is achieved by means of a meander line for current path enlargement as well as the two parameterized slits providing additional degrees of freedom that help to ensure good impedance matching. For the sake of reliability, the...
Rok 2014
-
A compact microstrip rat-race coupler constituted by nonuniform transmission lines
PublikacjaIn this work, a step-by-step development of a compact microstrip rat-race coupler (RRC) has been presented and discussed. A high degree of miniaturization has been obtained by substituting six quarter-wavelength uniform atomic building blocks of a RRC by their nonuniform counterparts. The miniaturization procedure has been realized in three progressive steps: (i) the first layout solution of a miniaturized RRC has been acquired...
-
A Concept and Design Optimization of Compact Planar UWB Monopole Antenna
PublikacjaA novel structure concept of a compact UWB monopole antenna is introduced together with a low-cost design optimization procedure. Reduced footprint is achieved by introduction of a protruded ground plane for current path increase and a matching transformer to ensure wideband impedance matching. All geometrical parameters of the structure are optimized simultaneously by means of surrogate based optimization involving variable-fidelity...
-
A robust design of a numerically demanding compact rat-race coupler
PublikacjaA fast and accurate design procedure of a computationally expensive microwave circuit has been presented step-by-step and experimentally validated on the basis of a compact rat-race coupler (RRC) comprising slow-wave resonant structures (SWRSs). The final compact RRC solution has been obtained by means of a sequential optimization scheme exploiting the implicit space mapping (ISM) algorithm. A well-suited surrogate optimization...
-
Atomistic Surrogate-Based Optimization for Simulation-Driven Design of Computationally Expensive Microwave Circuits with Compact Footprints
PublikacjaA robust simulation-driven design methodology for computationally expensive microwave circuits with compact footprints has been presented. The general method introduced in this chapter is suitable for a wide class of N-port un-conventional microwave circuits constructed as a deviation from classic design solutions. Conventional electromagnetic (EM) simulation-driven design routines are generally prohibitive when applied to numerically...
-
Computationally Efficient Multi-Objective Optimization of and Experimental Validation of Yagi-Uda Antenna
PublikacjaIn this paper, computationally efficient multi-objective optimization of antenna structures is discussed. As a design case, we consider a multi-parameter planar Yagi-Uda antenna structure, featuring a driven element, three directors, and a feeding structure. Direct optimization of the high-fidelity electromagnetic (EM) antenna model is prohibitive in computational terms. Instead, our design methodology exploits response surface...
-
Design of microstrip antenna subarrays: a simulation-driven surrogate-based approach
PublikacjaA methodology for computationally efficient simulation-driven design of microstrip antenna subarrays is presented. Our approach takes into account the effect of the feed (here, a corporate network) on the subarray side-lobe level and allows adjustment of both radiation and reflection responses of the structure under design within a single automated process. This process is realized as surrogate-based optimization that produces...
-
Design space reduction and variable-fidelity EM simulations for feasible Pareto optimization of antennas
PublikacjaA computationally efficient procedure for multi-objective optimization of antenna structures is presented. In our approach, a response surface approximation (RSA) model created from sampled coarse-discretization EM antenna simulations is utilized to yield an initial set of Pareto-optimal designs using a multi-objective evolutionary algorithm. The final Pareto front representation for the high-fidelity model is obtained using surrogate-based...
-
Design Space Reduction for Expedited Multi-Objective Design Optimization of Antennas in Highly-Dimensional Spaces
PublikacjaA surrogate-based technique for efficient multi-objective antenna optimization is discussed. Our approach exploits response surface approximation (RSA) model constructed from low-fidelity antenna model data (here, obtained through coarse-discretization electromagnetic simulations). The RSA model enables fast determination of the best available trade-offs between conflicting design goals. The cost of RSA model construction for multi-parameter...
-
Efficient Multi-Objective Simulation-Driven Antenna Design Using Co-Kriging
PublikacjaA methodology for fast multi-objective antenna optimization is presented. Our approach is based on response surface approximation (RSA) modeling and variable-fidelity electromagnetic (EM) simulations. In the design process, a computationally cheap RSA surrogate model constructed from sampled coarse-discretization EM antenna simulations is optimized using a multi-objective evolutionary algorithm. The initially determined Pareto...
-
EM-Driven Multi-Objective Optimization of Antenna Structures in Multi-Dimensional Design Spaces
PublikacjaFeasible multi-objective optimization of antenna structures is presented. An initial set of Pareto optimal solutions is found using a multi-objective evolutionary algorithm (MOEA) working with a fast surrogate antenna model obtained by kriging interpolation of coarse-discretization EM simulation data. To make the surrogate construction computationally feasible in multi-dimensional design space, the space subset containing non-dominated...
-
Expedited EM-driven multi-objective antenna design in highly-dimensional parameter spaces
PublikacjaA technique for low-cost multi-objective optimization of antennas in highly-dimensional parameter spaces is presented. The optimization procedure is expedited by exploiting fast surrogate models, including coarse-discretization EM antenna simulations and response surface approximations (RSA). The latter is utilized to yield an initial set of Pareto non-dominated designs which are further refined using response correction methods....
-
Fast Low-fidelity Wing Aerodynamics Model for Surrogate-Based Shape Optimization
PublikacjaVariable-fidelity optimization (VFO) can be efficient in terms of the computational cost when compared with traditional approaches, such as gradient-based methods with adjoint sensitivity information. In variable-fidelity methods, the directoptimization of the expensive high-fidelity model is replaced by iterative re-optimization of a physics-based surrogate model, which is constructed from a corrected low-fidelity model. The success...
-
Fast Multi-Objective Antenna Design Through Variable-Fidelity EM Simulations
PublikacjaA technique for fast multi-objective antenna optimization is introduced. A kriging interpolation surrogate constructed from sampled coarse-mesh EM simulations is utilized by multi-objective evolutionary algorithm (MOEA) to obtain the initial Pareto front approximation. The surrogate is defined in a subset of the original design space, determined by means of independently optimized individual objectives. Response correction techniques...
-
Improvement of derivatized amino acid detection sensitivity in micellar electrokinetic capillary chromatography by means of acid-induced pH-mediated stacking technique
PublikacjaDerivatization is a frequently used sample prepara-tion procedure applicable to the enhancement of analyte de-tection sensitivity. Amino acids mostly require derivatization prior to electrophoretic or chromatographic analysis, especial-ly if spectrophotometric detection is used. This study presents an on-line preconcentration technique for derivatized amino acids. The sensitivity of the method was improved by the utilization of...
-
Local-Global Space Mapping for Rapid EM-Driven Design of Compact RF Structures
PublikacjaIn this work, we introduce a robust and efficient technique for rapid design of compact RF circuits. Our approach exploits two-level space mapping (SM) correction of an equivalent circuit model of the structure under design. The first SM layer (local correction) is utilized to ensure good matching between the equivalent circuit and the electromagnetic model at the component level. On the other hand, the global correction allows...
-
Low-cost EM-Simulation-based Multi-objective Design Optimization of Miniaturized Microwave Structures
PublikacjaIn this work, a simple yet reliable technique for fast multi-objective design optimization of miniaturized microwave structures is discussed. The proposed methodology is based on point-by-point identification of a Pareto-optimal set of designs representing the best possible trade-offs between conflicting objectives such as electrical performance parameters as well as the size of the structure of interest. For the sake of computational...
-
Low-Cost EM-Simulation-Driven Multi-Objective Optimization of Antennas
PublikacjaA surrogate-based method for efficient multi-objective antenna optimization is presented. Our technique exploits response surface approximation (RSA) model constructed from sampled low-fidelity antenna model (here, obtained through coarse-discretization EM simulation). The RSA model enables fast determination of the best available trade-offs between conflicting design goals. A low-cost RSA model construction is possible through...
-
Low-Cost Multi-Objective Optimization Yagi-Uda Antenna in Multi-Dimensional Parameter Space
PublikacjaA surrogate-based technique for fast multi-objective optimization of a multi-parameter planar Yagi-Uda antenna structure is presented. The proposed method utilizes response surface approximation (RSA) models constructed using training samples obtained from evaluation of the low-fidelity antenna model. Utilization of the RSA models allowsfor fast determination of the best possible trade-offs between conflicting objectives in multi-objective...
-
Nested Space Mapping Technique for Design and Optimization of Complex Microwave Structures with Enhanced Functionality
PublikacjaIn this work, we discuss a robust simulation-driven methodology for rapid and reliable design of complex microwave/RF circuits with enhanced functionality. Our approach exploits nested space mapping (NSM) technology, which is dedicated to expedite simulation-driven design optimization of computationally demanding microwave structures with complex topologies. The enhanced func-tionality of the developed circuits is achieved by means...
-
Nested Space Mapping Technology for Expedite EM-driven Design of Compact RF/microwave Components
PublikacjaA robust simulation-driven methodology for rapid and reliable design of RF/microwave circuits comprising compact microstrip resonant cells (CMRCs) is presented. We introduce a nested space mapping (NSM) technology, in which the inner space mapping layer is utilized to improve the generalization capabilities of the equivalent circuit model corresponding to a constitutive element of the circuit under consideration. The outer layer...
-
Novel Structure and EM-Driven Design of Small UWB Monopole Antenna
PublikacjaA novel structure of a small UWB monopole antenna is presented. In our approach, a compact size is achieved by means of a meander line for current path enlargement as well as the two parameterized slits that introduce additional degrees of freedom helping to ensure good impedance matching. The antenna design is carried out using surrogate-based optimization involving variable-fidelity EM simulations. This allows us to simultaneously...
-
Rapid EM-Driven Design of Compact RF Circuits By Means of Nested Space Mapping
PublikacjaA methodology for rapid design of RF circuits constituted by compact microstrip resonant-cells (CMRCs) is presented. Our approach exploits nested space mapping (NSM) technology, where the inner SM layer is used to correct the equivalent circuit model at the CMRC level, whereas the outer layer enhances the coarse model of the entire structure under design. We demonstrate that NSM dramatically improves performance of surrogate-based...
-
Small Antenna Design Using Surrogate-Based Optimization
PublikacjaIn this work, design of small antennas using efficient numerical optimization is investigated. We exploit variable-fidelity electromagnetic (EM) simulations and the adaptively adjusted design specifications (AADS) technique. Combination of these methods allows us to simultaneously adjust multiple geometry parameters of the antenna structure of interest in a computationally feasible manner, leading to substantial reduction of the...
-
Trawl-Door Shape Optimization with 3D CFD Models and Local Surrogates
PublikacjaDesign and optimization of trawl-doors are key factors in minimizing the fuel consumption of fishing vessels. This paper discusses optimization of the trawl-door shapes using high-fidelity 3D computational fluid dynamic (CFD) models. The accurate 3D CFD models are computationally expensive and, therefore, the direct use of traditional optimization algorithms, which often require a large number of evaluations, may be prohibitive....
Rok 2013
-
A CMRC-based compact rat-race coupler with harmonic suppression
PublikacjaIn this paper, an eective miniaturization technique exploiting compact microstrip resonant cells has been discussed and experimentally validated on the basis of a 3-dB microstrip rat-race coupler. The application of the method proposed has resulted in 91 % circuit area reduction in comparison to a conventional rat-race coupler. Experimental results show good agreement with theoretical characteristics, as well as an additional eect,...
Rok 2012
-
A new approach to a fast and accurate design of microwave circuits with complex topologies
PublikacjaA robust simulation-driven design methodology of microwave circuits with complex topologies has been presented. The general method elaborated is suitable for a wide class of N-port unconventional microwave circuits constructed as a deviation from classic design solutions. The key idea of the approach proposed lies in an iterative redesign of a conventional circuit by a sequential modification and optimisation of its atomic building...