Abstrakt
Proper triage of COVID-19 patients is a key factor in eective case management, especially with limited and insucient resources. In this paper, we propose a machine-aided diagnostic system to predict how badly a patient with COVID-19 will develop disease. The prognosis of this type is based on the parameters of commonly used complete blood count tests, which makes it possible to obtain data from a wide range of patients.We chose the four-tier nursing care category as the outcome variable. In this paper, we compare traditional tree-based machine learning models with approaches based on neural networks. The developed tool achieves a weighted average F1 score of 73% for a three-class COVID-19 severity forecast. We show that the complete blood count test can form the basis of a convenient and easily accessible method of predicting COVID-19 severity. Of course, such a model requires meticulous validation before it is proposed for inclusion in real medical procedures.
Cytowania
-
2
CrossRef
-
0
Web of Science
-
0
Scopus
Autorzy (6)
Cytuj jako
Pełna treść
pełna treść publikacji nie jest dostępna w portalu
Słowa kluczowe
Informacje szczegółowe
- Kategoria:
- Publikacja monograficzna
- Typ:
- rozdział, artykuł w książce - dziele zbiorowym /podręczniku w języku o zasięgu międzynarodowym
- Język:
- angielski
- Rok wydania:
- 2022
- Opis bibliograficzny:
- Klaudel B., Obuchowski A., Karski R., Rydziński B., Jasik P., Kowalczuk Z.: COVID-19 severity forecast based on machine learning and complete blood count data// Intelligent and Safe Computer Systems in Control and Diagnostics/ : , , s.52-62
- DOI:
- Cyfrowy identyfikator dokumentu elektronicznego (otwiera się w nowej karcie) 10.1007/978-3-031-16159-9_5
- Źródła finansowania:
-
- Publikacja bezkosztowa
- Weryfikacja:
- Politechnika Gdańska
wyświetlono 148 razy