COVID-19 severity forecast based on machine learning and complete blood count data - Publikacja - MOST Wiedzy

Wyszukiwarka

COVID-19 severity forecast based on machine learning and complete blood count data

Abstrakt

Proper triage of COVID-19 patients is a key factor in eective case management, especially with limited and insucient resources. In this paper, we propose a machine-aided diagnostic system to predict how badly a patient with COVID-19 will develop disease. The prognosis of this type is based on the parameters of commonly used complete blood count tests, which makes it possible to obtain data from a wide range of patients.We chose the four-tier nursing care category as the outcome variable. In this paper, we compare traditional tree-based machine learning models with approaches based on neural networks. The developed tool achieves a weighted average F1 score of 73% for a three-class COVID-19 severity forecast. We show that the complete blood count test can form the basis of a convenient and easily accessible method of predicting COVID-19 severity. Of course, such a model requires meticulous validation before it is proposed for inclusion in real medical procedures.

Cytuj jako

Pełna treść

pełna treść publikacji nie jest dostępna w portalu

Słowa kluczowe

Informacje szczegółowe

Kategoria:
Aktywność konferencyjna
Typ:
publikacja w wydawnictwie zbiorowym recenzowanym (także w materiałach konferencyjnych)
Język:
angielski
Rok wydania:
2022
Opis bibliograficzny:
Klaudel B., Obuchowski A., Karski R., Rydziński B., Jasik P., Kowalczuk Z.: COVID-19 severity forecast based on machine learning and complete blood count data// / : , 2022,
Weryfikacja:
Politechnika Gdańska

wyświetlono 94 razy

Publikacje, które mogą cię zainteresować

Meta Tagi