Vehicle detector training with labels derived from background subtraction algorithms in video surveillance
Abstrakt
Vehicle detection in video from a miniature station- ary closed-circuit television (CCTV) camera is discussed in the paper. The camera provides one of components of the intelligent road sign developed in the project concerning the traffic control with the use of autonomous devices being developed. Modern Convolutional Neural Network (CNN) based detectors need big data input, usually demanding their manual labeling. In the presented research approach the weakly-supervised learning paradigm is used for the training of a CNN based detector em- ploying labels obtained automatically through an application of video background subtraction algorithm. The proposed method is evaluated on GRAM-RTM dataset and a CNN fine-tuned with labels from the background subtraction algorithm. Even though obtained representation in the form of labels may include many false positives and negatives, a reliable vehicle detector was trained employing them. The results are presented showing that such a method can be applied to traffic surveillance systems.
Cytowania
-
4
CrossRef
-
0
Web of Science
-
5
Scopus
Autorzy (2)
Cytuj jako
Pełna treść
pełna treść publikacji nie jest dostępna w portalu
Słowa kluczowe
Informacje szczegółowe
- Kategoria:
- Aktywność konferencyjna
- Typ:
- materiały konferencyjne indeksowane w Web of Science
- Tytuł wydania:
- SPA 2018 Signal Processing algorithms, architectures, arrangements, and applications strony 98 - 103
- Język:
- angielski
- Rok wydania:
- 2018
- Opis bibliograficzny:
- Cygert S., Czyżewski A..: Vehicle detector training with labels derived from background subtraction algorithms in video surveillance, W: SPA 2018 Signal Processing algorithms, architectures, arrangements, and applications, 2018, ,.
- DOI:
- Cyfrowy identyfikator dokumentu elektronicznego (otwiera się w nowej karcie) 10.23919/spa.2018.8563368
- Weryfikacja:
- Politechnika Gdańska
wyświetlono 123 razy