Effect of GIS parameters on modelling runoff from river basin. The case study of catchment in the Puck District - Publication - Bridge of Knowledge

Search

Effect of GIS parameters on modelling runoff from river basin. The case study of catchment in the Puck District

Abstract

The study was preceded to check the impact of the adopted digital elevation model resolution on the determination of catchment parameters and the further influence of the received information on calculations related to the hydrograph at the closing point of the basin after a synthetic 100-year precipitation episode. The study area are river basins located in the Puck commune convoying water directly to the Puck Bay. These studies allowed the formulation of the basic assumptions for the research project (in short called WaterPuck) supported by the National Centre for Research and Development.

Citations

  • 4

    CrossRef

  • 0

    Web of Science

  • 6

    Scopus

Cite as

Full text

download paper
downloaded 39 times
Publication version
Accepted or Published Version
License
Creative Commons: CC-BY open in new tab

Keywords

Details

Category:
Articles
Type:
artykuły w czasopismach
Published in:
E3S Web of Conferences no. 63, pages 1 - 5,
ISSN:
Language:
English
Publication year:
2018
Bibliographic description:
Kolerski T., Zima P., Kalinowska D., Wielgat P.: Effect of GIS parameters on modelling runoff from river basin. The case study of catchment in the Puck District// E3S Web of Conferences -Vol. 63, (2018), s.1-5
DOI:
Digital Object Identifier (open in new tab) 10.1051/e3sconf/20186300005
Bibliography: test
  1. D.R. Maidment, Handbook of hydrology, McGraw- Hill (1992) open in new tab
  2. S. Eslamian, Handbook of engineering hydrology: fundamentals and applications, CRC Press, Taylor and Francis NY (2014) open in new tab
  3. W. Szpakowski and M. Szydłowski, Evaluating the Catastrophic Rainfall of 14 July 2016 in the Catchment Basin of the Urbanized Strzyza Stream in Gdańsk, Polish Journal of Environmental Studies, 27, 2, pp. 861-869, (2018). DOI: 10.15244/pjoes/75962 open in new tab
  4. M. Szydłowski, et al., Stormwater and snowmelt runoff storage control and flash flood hazard forecasting in the urbanized coastal basin, in Proc. of 14th International Symposium Water Management and Hydraulic Engineering WMHE 2015, pp. 141-150 (2015)
  5. P. Wielgat and P. Zima, Analysis of the impact of the planned sewage discharge from the 'North' Power Plant on the Vistula water quality, in Proc. of 16th International Multidisciplinary Scientific GeoConference SGEM 2016, book 3, vol. 3, pp. 19- 26 (2016). DOI: 10.5593/SGEM2016/HB33/S02.003 open in new tab
  6. P. Zima, Modeling of the Two-Dimensional Flow Caused by Sea Conditions and Wind Stresses on the Example of Dead Vistula, Polish Maritime Research, 25, s1, pp. 166-171 (2018). DOI: 10.247/pomr-2018-0038 open in new tab
  7. T. Kolerski, Modeling of ice phenomena in the mouth of the Vistula River, Acta Geophysica, 62, 893-914 (2014). DOI:10.2478/s11600-014-0213-x open in new tab
  8. T. Kolerski, Ice cover progression due to flow regulation at the Wloclawek dam, Acta Scientiarum Polonorum. Formatio Circumiectus, 14, 229-240 (2015) open in new tab
  9. J.G. Arnold, N. Fohrer, SWAT2000: Current capabilities and research opportunities in applied watershed modelling, Hydrological Processes, 19, 3, pp. 563-572, (2005). DOI: 10.1002/hyp.5611 open in new tab
  10. J.G. Arnold, et al., Soil and Water Assessment Tool input/output file documentation: Version 2012, Texas Water Resources Institute, TR-439, (2012)
  11. R. Srinivasan, et al., Large area hydrologic modeling and assessment part II: model application, Journal of the American Water Resources Association, 34 (1), pp. 91-101, (1998). DOI: 10.1111/j.1752-1688.1998.tb05962.x open in new tab
  12. T.K.Tesfa, et al., Extraction of hydrological proximity measures from DEMs using parallel processing, Environmental Modelling & Software, 26 (12), pp. 1696-1709, (2011). DOI: 10.1016/j.envsoft.2011. 07.018 open in new tab
  13. J.P. Wilson, Digital terrain modeling, Geomorphology, 137, 1, pp. 107-121 (2012). DOI: 10.1016/j.geomorph.2011.03.012 open in new tab
  14. Y.T. Dile, et al., Introducing a new open source GIS user interface for the SWAT model, Environmental Modelling & Software, 85, pp. 129-138 (2016). DOI: 10.1016/j.envsoft.2016.08.004 open in new tab
  15. D.G. Tarboton, A new method for the determination of flow directions and upslope areas in grid digital elevation models, Water Resources Research, 33, 2, pp. 309-319 (1997). DOI: 10.1029/ 96WR03137 open in new tab
  16. K. Bobkowska, A. Inglot, M. Mikusova, P. Tysiąc, Implementation of Spatial Information for Monitoring and Analysis of the Area Around the Port Using Laser Scanning Techniques, Polish Maritime Research, 24, S1, pp. 10-15 (2017). DOI: 10.1515/pomr-2017-0015 open in new tab
  17. K. Bobkowska, A. Janowski, J. Szulwic, 3D modelling of cylindrical-shaped objects from LiDAR data -an assessment based on theoretical modelling and experimental data, Metrology and Measurement Systems, Vol. 25, issue 1, pp. 47-56, 2018. DOI: 10.24425/118156 open in new tab
  18. A. Inglot, P. Tysiąc, Airborne Laser Scanning Point Cloud Update by Used of the Terrestrial Laser Scanning and the Low-Level Aerial Photogrammetry, Proceedings -2017 Baltic Geodetic Congress (Geomatics), BGC Geomatics 2017, pp. 34-38 (2017). DOI: 10.1109/ BGC.Geomatics.2017.75 open in new tab
  19. J. Szulwic, P. Ziolkowski, A. Janowski, Combined Method of Surface Flow Measurement Using Terrestrial Laser Scanning and Synchronous Photogrammetry, Proceedings -2017 Baltic Geodetic Congress (Geomatics), BGC Geomatics 2017, pp. 110-115 (2017). DOI: 10.1109/ BGC.Geomatics.2017.54
  20. D. Potrykus, et al., Assessing groundwater vulnerability to pollution in the Puck region (denudation moraine upland) using vertical seepage method, E3S Web of Conferences. 44, 00147 (2018). DOI 10.1051/ e3sconf/20184400147 open in new tab
  21. Jr.A.T. Hjelmfelt, Investigation of curve number procedure, Journal of Hydraulic Engineering, 117, pp. 725-737 (1991). DOI: 10.1061/(ASCE)0733- 9429(1991)117:6(725) open in new tab
  22. SCS: National Engineering Handbook, Section 4: Hydrology, Soil Conservation Service, USDA, Washington, D.C. (2004) open in new tab
  23. K. Weinerowska-Bords, Development of Local IDF- formula Using Controlled Random Search Method for Global Optimization, Acta Geophysica, 63, 1, pp 232-274, (2015). DOI 10.2478/s11600-014-0242-5 open in new tab
  24. W. A. Scharffenberg and M. J. Fleming, Hydrologic Modeling System HEC -HMS User's Manual (2010) open in new tab
  25. HEC-HMS Technical Reference Manual, US Army Corps of Engineers Hydrologic Engineering Center, USA (2000)
Sources of funding:
Verified by:
Gdańsk University of Technology

seen 122 times

Recommended for you

Meta Tags