Filters
total: 133
Best results in : Research Potential Pokaż wszystkie wyniki (99)
Search results for: AUTOMATIC POWER CAPPING
-
Architektura Systemów Komputerowych
Research PotentialGłówną tematyką badawczą podejmowaną w Katedrze jest rozwój architektury aplikacji i systemów komputerowych, w szczególności aplikacji i systemów równoległych i rozproszonych. "Architecture starts when you carefully put two bricks together" - stwierdza niemiecki architekt Ludwig Mies von der Rohe. W przypadku systemów komputerowych dotyczy to nie cegieł, a modułów sprzętowych lub programowych. Przez architekturę systemu komputerowego...
-
KatedrA Chemii Fizycznej
Research Potential1.Termodynamika i struktura roztworów, oddziaływania międzycząsteczkowe w roztworach - badania termodynamiczne, spektroskopowe i teoretyczne. 2. Fizykochemiczne podstawy analizy środowiskowej.
-
Katedra Elektrochemii, Korozji i Inżynierii Materiałowej
Research PotentialBadania realizowane przez pracowników Katedry obejmują w szczególności: zjawiska i procesy elektrochemiczne, podstawy korozji i zabezpieczenie przed korozją, inżynierię materiałowa, fizykochemię powierzchni. W Katedrze Elektrochemii, Korozji i Inżynierii Materiałowej realizowanych jest szereg kierunków związanych z badaniami podstawowymi jak i techniczno-technologicznymi. Głównymi obszarami działalności naukowej są: badania mechanizmu...
Best results in : Business Offer Pokaż wszystkie wyniki (34)
Search results for: AUTOMATIC POWER CAPPING
-
Superkomputer Tryton
Business OfferObliczenia dużej skali, Wirtualna infrastruktura w chmurze (IaaS), Analiza danych (big data)
-
Laboratorium Badawcze 2-3
Business OfferObliczenia komputerowe wymagające dużych mocy obliczeniowych z wykorzystaniem oprogramowania typu: Matlab, Tomlab, Gams, Apros.
-
Laboratorium LINTE^2
Business OfferBadania w zakresie elektroenergetyki, energoelektroniki i przyłączania nowoczesnych źródeł energii do sieci elektroenergetycznej
Other results Pokaż wszystkie wyniki (3217)
Search results for: AUTOMATIC POWER CAPPING
-
DEPO: A dynamic energy‐performance optimizer tool for automatic power capping for energy efficient high‐performance computing
PublicationIn the article we propose an automatic power capping software tool DEPO that allows one to perform runtime optimization of performance and energy related metrics. For an assumed application model with an initialization phase followed by a running phase with uniform compute and memory intensity, the tool performs automatic tuning engaging one of the two exploration algorithms—linear search (LS) and golden section search (GSS), finds...
-
Performance/energy aware optimization of parallel applications on GPUs under power capping
PublicationIn the paper we present an approach and results from application of the modern power capping mechanism available for NVIDIA GPUs to the bench- marks such as NAS Parallel Benchmarks BT, SP and LU as well as cublasgemm- benchmark which are widely used for assessment of high performance computing systems’ performance. Specifically, depending on the benchmarks, various power cap configurations are best for desired trade-off of performance...
-
Extended investigation of performance-energy trade-offs under power capping in HPC environments
Publication—In the paper we present investigation of performance-energy trade-offs under power capping using modern processors. The results are presented for systems targeted at both server and client markets and were collected from Intel Xeon E5 and Intel Xeon Phi server processors as well as from desktop and mobile Intel Core i7 processors. The results, when using power capping, show that we can find various interesting combinations of...
-
Investigation of Performance and Energy Consumption of Tokenization Algorithms on Multi-core CPUs Under Power Capping
PublicationIn this paper we investigate performance-energy optimization of tokenizer algorithm training using power capping. We focus on parallel, multi-threaded implementations of Byte Pair Encoding (BPE), Unigram, WordPiece, and WordLevel run on two systems with different multi-core CPUs: Intel Xeon 6130 and desktop Intel i7-13700K. We analyze execution times and energy consumption for various numbers of threads and various power caps and...
-
Performance and Energy Aware Training of a Deep Neural Network in a Multi-GPU Environment with Power Capping
PublicationIn this paper we demonstrate that it is possible to obtain considerable improvement of performance and energy aware metrics for training of deep neural networks using a modern parallel multi-GPU system, by enforcing selected, non-default power caps on the GPUs. We measure the power and energy consumption of the whole node using a professional, certified hardware power meter. For a high performance workstation with 8 GPUs, we were...