Filters
total: 58
Best results in : Research Potential Pokaż wszystkie wyniki (50)
Search results for: ORLICZ–SOBOLEV SPACES
-
Zespół Katedry Analizy Nieliniowej i Statystyki
Research PotentialW Katedrze prowadzone są badania w trzech wiodących kierunkach. Pierwszy dotyczy zastosowania metod topologicznych i wariacyjnych w układach dynamicznych, w teorii równań różniczkowych zwyczajnych i cząstkowych oraz w teorii bifurkacji. Drugim kierunkiem badań Katedry jest zastosowanie rachunku prawdopodobieństwa i teorii aproksymacji. Ostatnią specjalizacją jest Geometria i Grafika Komputerowa, która istnieje od 2014 roku. Wybór...
-
Zespół Katedry Rachunku Prawdopodobieństwa i Biomatematyki
Research Potential* modele ryzyka i ich zastosowania * probabilistyczne i grafowe metody w biologii * stochastyczne równania różniczkowe * statystyczna analiza danych * teoria grafów * teoria i zastosowania stochastycznych układów dynamicznych w biologii i medycynie
-
Zespół Katedry Wytrzymałości Materiałów
Research PotentialKatedra zajmuje się zagadnieniami związanymi z wytrzymałością elementów konstrukcji, ich teorią oraz analizą, jak również do myśli przewodnich należy zaliczyć materiałowe badania doświadczalne oraz prace nad technologią betonu. Współpracujemy z przemysłem z branż budowlanych i okołobudowlanych, wykorzystując wypracowane doświadczenie i wiedzę z zakresu materiałów konstrukcyjnych i budowlanych.
Best results in : Business Offer Pokaż wszystkie wyniki (8)
Search results for: ORLICZ–SOBOLEV SPACES
-
GUT LightLab [Laboratorium badawcze światła]
Business OfferTBC Celem Laboratorium Światła (z ang. GUT LightLab), jako placówki międzydyscyplinarnej, jest prowadzenie na wysokim poziomie badań podstawowych oraz badań stosowanych z pogranicza wielu dziedzin, w aspekcie odziaływania Światła, takich jak: Ochrona Środowiska, Medycyna, Zrównoważony Rozwój, Architektura Budowli, Architektura Dziedzictwa, Architektura Krajobrazu, Urbanistyka, Architektura Wnętrz, System znajdowania drogi (z ang....
-
Laboratorium Diagnostyki Silników i Sprężarek Tłokowych
Business OfferIdentyfikacja stanu technicznego głównych układów funkcjonalnych silników spalinowych i sprężarek w oparciu o wyniki badań diagnostycznych.
-
Laboratorium Maszyn i Systemów Okrętowych
Business OfferBadania procesów i zjawisk w czasie realizacji obiegu roboczego w silniku z zapłonem samoczynnym dla potrzeb diagnostyki maszyn tłokowych.
Other results Pokaż wszystkie wyniki (451)
Search results for: ORLICZ–SOBOLEV SPACES
-
Regularity of weak solutions for aclass of elliptic PDEs in Orlicz-Sobolev spaces
PublicationWe consider the elliptic partial differential equation in the divergence form $$-\div(\nabla G(\nabla u(x))) t + F_u (x, u(x)) = 0,$$ where $G$ is a convex, anisotropic function satisfying certain growth and ellipticity conditions We prove that weak solutions in $W^{1,G}$ are in fact of class $W^{2,2}_{loc}\cap W^{1,\infty}_{loc}$.
-
Anisotropic Orlicz–Sobolev spaces of vector valued functions and Lagrange equations
PublicationIn this paper we study some properties of anisotropic Orlicz and Orlicz–Sobolev spaces of vector valued functions for a special class of G-functions. We introduce a variational setting for a class of Lagrangian Systems. We give conditions which ensure that the principal part of variational functional is finitely defined and continuously differentiable on Orlicz–Sobolev space.
-
Minimization of integral functionals in Sobolev spaces
PublicationPraca ma charakter przeglądowy i jest skierowana do młodych matematyków i doktorantów. Dotyczy problematyki omawianej przeze mnie na Zimowej Szkole Centrum Badań Nieliniowych im. J.P. Schaudera w Toruniu w roku 2009. Zawarłam w niej wybrane, znane wyniki dotyczące problemu minimalizacji funkcjonałów całkowych w przestrzeniach Sobolewa funkcji jednej zmiennej.
-
Quasilinear elliptic problem in anisotropic Orlicz–Sobolev space on unbounded domain
PublicationWe study a quasilinear elliptic problem $-\text{div} (\nabla \Phi(\nabla u))+V(x)N'(u)=f(u)$ with anisotropic convex function $\Phi$ on the whole $\R^n$. To prove existence of a nontrivial weak solution we use the mountain pass theorem for a functional defined on anisotropic Orlicz-Sobolev space $\WLPhispace(\R^n)$. As the domain is unbounded we need to use Lions type lemma formulated for Young functions. Our assumptions broaden...
-
Mountain pass type periodic solutions for Euler–Lagrange equations in anisotropic Orlicz–Sobolev space
PublicationUsing the Mountain Pass Theorem, we establish the existence of periodic solution for Euler–Lagrange equation. Lagrangian consists of kinetic part (an anisotropic G-function), potential part and a forcing term. We consider two situations: G satisfying at infinity and globally. We give conditions on the growth of the potential near zero for both situations.