Search results for: ai safety · robustness · uncertainty estimation · pedestrian detection · object detection. - Bridge of Knowledge

Search

Search results for: ai safety · robustness · uncertainty estimation · pedestrian detection · object detection.

Best results in : Research Potential Pokaż wszystkie wyniki (103)

Search results for: ai safety · robustness · uncertainty estimation · pedestrian detection · object detection.

  • Zespół Systemów Multimedialnych

    * technologie archiwizacji, rekonstrukcji i dostępu do nagrań archiwalnych * technologie inteligentnego monitoringu wizyjnego i akustycznego * multimedialne technologie telemedyczne * multimodalne interfejsy komputerowe

  • Zespół Inżynierii Biomedycznej

    Inżynieria biomedyczna stanowi nową interdyscyplinarną dziedzinę wiedzy zlokalizowaną na pograniczu nauk technicznych, medycznych i biologicznych. Według opinii WHO (World Health Organization) można ją zaliczyć do głównych (obok inżynierii genetycznej) czynników decydujących o postępie współczesnej medycyny. Rosnące znaczenie kształcenia w zakresie INŻYNIERII BIOMEDYCZNEJ wynika z faktu, że specjaliści tej dyscypliny są potrzebni...

  • Zespół Systemów Multimedialnych

    * technologie archiwizacji, rekonstrukcji i dostępu do nagrań archiwalnych * technologie inteligentnego monitoringu wizyjnego i akustycznego * multimedialne technologie telemedyczne * multimodalne interfejsy komputerowe

Best results in : Business Offer Pokaż wszystkie wyniki (34)

Search results for: ai safety · robustness · uncertainty estimation · pedestrian detection · object detection.

Other results Pokaż wszystkie wyniki (2164)

Search results for: ai safety · robustness · uncertainty estimation · pedestrian detection · object detection.

  • Toward Robust Pedestrian Detection With Data Augmentation

    Publication

    In this article, the problem of creating a safe pedestrian detection model that can operate in the real world is tackled. While recent advances have led to significantly improved detection accuracy on various benchmarks, existing deep learning models are vulnerable to invisible to the human eye changes in the input image which raises concerns about its safety. A popular and simple technique for improving robustness is using data...

    Full text available to download

  • Zdzisław Kowalczuk prof. dr hab. inż.

    Zdzislaw Kowalczuk received his M.Sc. degree in 1978 and Ph.D. degree in 1986, both in Automatic Control from Technical University of Gdańsk (TUG), Gdańsk, Poland. In 1993 he received his D.Sc. degree (Dr Habilitus) in Automatic Control from Silesian Technical University, Gliwice, Poland, and the title of Professor from the President of Poland in 2003. Since 1978 he has been with Faculty of Electronics, Telecommunications and Informatics...

  • Robustness in Compressed Neural Networks for Object Detection

    Publication

    - Year 2021

    Model compression techniques allow to significantly reduce the computational cost associated with data processing by deep neural networks with only a minor decrease in average accuracy. Simultaneously, reducing the model size may have a large effect on noisy cases or objects belonging to less frequent classes. It is a crucial problem from the perspective of the models' safety, especially for object detection in the autonomous driving...

    Full text available to download

  • Evaluating calibration and robustness of pedestrian detectors

    Publication

    - Year 2020

    In this work robustness and calibration of modern pedestrian detectors are evaluated. Pedestrian detection is a crucial perception com- ponent in autonomous driving and here we study its performance under different image corruptions. Furthermore, we provide analysis of classifi- cation calibration of pedestrian detectors and we show a positive effect of using style-transfer augmentation technique. Our analysis is aimed as a step...

    Full text to download in external service

  • Change Detection in Signals 2023

    e-Learning Courses
    • J. Kozłowski

    Change Detection in Signals - files for students.