dr inż. Szymon Winczewski
Publications
Filters
total: 22
Catalog Publications
Year 2022
-
Negative Poisson’s ratio from pentagons: A new auxetic structure combining three different auxetic mechanisms
PublicationA novel class of two-dimensional auxetic structures based on the pentagon motif is proposed. Their mechanical properties are investigated by combining molecular mechanics simulations with a simple three-parameter mechanical model which assumes perfectly elastic behavior. It is predicted that the proposed structures – termed as double re-entrant honeycomb – may possess unique mechanical characteristics, which include complete and...
-
Properties of Oxygen Vacancy and Hydrogen Interstitial Defects in Strontium Titanate: DFT + Ud,p Calculations
PublicationThis work presents extensive theoretical studies focused on the mixed ion-electron transport in cubic strontium titanate (STO). A new approach to the description of this difficult system was developed within the framework of linear-scaling Kohn–Sham density functional theory, as realized in the ONETEP program. The description we present is free of any empirical parameters and relies on the Hubbard U and Hund’s J corrections applied...
Year 2021
-
Effect of heat treatment on the diffusion intermixing and structure of the Cu thin film on Si (111) substrate: a molecular dynamics simulation study
PublicationThis work is devoted to the study of the diffusion process at the interface between copper films with a thickness of 2, 3, 4, 7 and 10 atomic monolayers and silicon substrate by molecular dynamics simulation method. For this purpose, the variation of the concentration of copper and silicon along the perpendicular direction to the interface was investigated. An analysis of the density profile along this direction made it possible...
Year 2020
-
Application of the neural networks for developing new parametrization of the Tersoff potential for carbon
PublicationPenta-graphene (PG) is a 2D carbon allotrope composed of a layer of pentagons having sp2- and sp3-bonded carbon atoms. A study carried out in 2018 has shown that the parameterization of the Tersoff potential proposed in 2005 by Ehrhart and Able (T05 potential) performs better than other potentials available for carbon, being able to reproduce structural and mechanical properties of the PG. In this work, we tried to improve the...
-
Influence of addition of carbon nanotubes on rheological properties of selected liquid lubricants - a computer simulation study
PublicationThis work is motivated by the improvement of anti-friction properties of lubricants by addition of CNTs proved experimentally in literature. In particular, a methodology is developed to compute the shear viscosity of liquid lubricants (Propylene Glycol) based on Molecular Dynamics simulation. Non-Equilibrium molecular dynamics (NEMD) approach is used with a reactive force field ReaxFF implemented in LAMMPS. The simulations are...
-
Molecular Dynamics simulations of thermal conductivity of penta-graphene
PublicationThe thermal conductivity of penta-graphene (PG), a new two dimensional carbon allotrope and its dependence on temperature, strain, and direction are studied in this paper. The thermal conductivity of PG is investigated using a non-equilibrium molecular dynamics simulation (NEMD) with the Two Region Method by applying the optimized Tersoff interatomic potential. Our study shows that the thermal conductivity of PG (determined for...
-
Short-range order structure and free volume distribution in liquid bismuth: X-ray diffraction and computer simulations studies
PublicationThe structure of liquid bismuth was studied by X-ray diffraction and computer simulation methods. The contraction of the atomic structure within the first coordination sphere in the temperature interval of 575- 1225 K is reported. The temperature dependencies of the coordination numbers and of the free volume are analysed. On the basis of the temperature dependencies of the free volume, the temperature dependencies of viscosity...
-
Structure of the interlayer between Au thin film and Si-substrate: Molecular Dynamics simulations
PublicationInteraction between 2, 3, 5 and 7 atomic layers of gold and a (111) silicon surface was investigated with the molecular dynamics simulation method. The simulation of the diffusion interaction between gold and silicon in the temperature range 425-925 K has been carried out. The peculiarities of the concentration changes of the interacting components and the atomic density at the boundary...
-
Surface diffusion and cluster formation of gold on the silicon (111)
PublicationPurpose: Investigation of the gold atoms behaviour on the surface of silicon by molecular dynamics simulation method. The studies were performed for the case of one, two and four atoms, as well as incomplete and complete filling of gold atoms on the silicon surface. Design/methodology/approach: Investigations were performed by the method of molecular dynamics simulation using the Large-scale Atomic/Molecular Massively Parallel...
Year 2019
-
Anisotropic mechanical behavior and auxeticity of penta-graphene: Molecular statics/molecular dynamics studies
PublicationWe investigate the mechanical properties of penta-graphene (PG), a recently proposed two-dimensional carbon allotrope using atomistic simulation techniques combined with the empirical description of interatomic interactions. We report on the dependence of its three in-plane mechanical moduli (i.e. Young's modulus, Poisson's ratio and shear modulus) on the deformation direction, strain and temperature. We show that PG displays a...
-
Improvements to the two-phase sandwich method for calculating the melting points of pure metals
PublicationThe thermophysical properties of metal alloys are often investigated via molecular dynamics (MD) simulations.An exact and reliable estimation of the thermophysical parameters from the MD data requires a properly and carefullyelaborated methodology. In this paper, an improved two-phase sandwich method for the determination of the metal meltingtemperature is proposed, based on the solid-liquid equilibrium theory. The new method was...
-
In-depth characterization of icosahedral ordering in liquid copper
PublicationThe presence of icosahedral ordering in liquid copper at temperatures close to the melting point is now well-established both experimentally and through computer simulation. However, a more elaborate analysis of local icosahedral and icosahedron-like structures, together with a system for classifying such structures based on some measure of "icosahedrity", has so far been conspicuously absent in the literature. Similarly, the dynamics...
Year 2018
-
Interatomic potential suitable for the modeling of penta-graphene: Molecular statics/molecular dynamics studies
PublicationWe test the potentials available for elemental carbon, with the scope to choose the potential suitable for the modeling of penta-graphene, the latest two dimensional carbon allotrope. By using molecular statics and molecular dynamics simulations we show that there is only one potential e namely the Tersoff-type potential proposed by Erhart and Albe in 2005 e which is able to correctly describe all the important features of penta-graphene....
Year 2017
-
CENTRAL-FORCE DECOMPOSITION OF THE TERSOFF POTENTIAL
PublicationCentral forces play important role in the analysis of results obtained with particle simulation methods, since they allow evaluating stress fields. In this work we derive expressions for a central-force decompositon of the Tersoff potential, which is often used to describe interatomic interactions in covalently bonded materials. We simplify the obtained expressions and discuss their properties.
Year 2016
-
A highly-efficient technique for evaluating bond-orientational order parameters
PublicationWe propose a novel, highly-efficient approach for the evaluation of bond-orientational order parameters (BOPs). Our approach exploits the properties of spherical harmonics and Wigner 3jj-symbols to reduce the number of terms in the expressions for BOPs, and employs simultaneous interpolation of normalised associated Legendre polynomials and trigonometric functions to dramatically reduce the total number of arithmetic operations....
-
Central-force decomposition of spline-based modified embedded atom method potential
PublicationCentral-force decompositions are fundamental to the calculation of stress fields in atomic systems by means of Hardy stress. We derive expressions for a central-force decomposition of the spline-based modified embedded atom method (s-MEAM) potential. The expressions are subsequently simplified to a form that can be readily used in molecular-dynamics simulations, enabling the calculation of the spatial distribution of stress in...
-
Structure and properties of liquid Al–Cu alloys: Empirical potentials compared
PublicationWe report on the structure and mass transport properties of liquid Al–Cu alloys predicted by two recently-developed empirical many-body potentials: MEAM (Jelinek et al., 2012) and EAM-ADP (Apostol and Mishin, 2011), and by the well-known Gupta potential. Total and partial pair correlation functions, angular distribution functions, densities, coordination numbers and self-diffusion coefficients are compared with published experimental...
Year 2015
-
Structure and thermal expansion of liquid bismuth
PublicationExperimental structural data for liquid Bi were used for estimation of the main structure parameters as well as the thermal expansion coefficient both in supercooled and superheated temperature ranges. It was shown that the equilibrium melt had a positive thermal expansion coefficient within a temperature range upon melting and a negative one at higher temperatures. The former was related to structure changes upon melting, whereas...
-
Tailoring Graphene to Achieve Negative Poisson's Ratio Properties
PublicationGraphene can be made auxetic through the introduction of vacancy defects. This results in the thinnest negative Poisson's ratio material at ambient conditions known so far, an effect achieved via a nanoscale de-wrinkling mechanism that mimics the behavior at the macroscale exhibited by a crumpled sheet of paper when stretched.
Year 2014
-
Tools, Methods and Services Enhancing the Usage of the Kepler-based Scientific Workflow Framework
PublicationScientific workflow systems are designed to compose and execute either a series of computational or data manipulation steps, or workflows in a scientific application. They are usually a part of a larger eScience environment. The usage of workflow systems, however very beneficial, is mostly not irrelevant for scientists. There are many requirements for additional functionalities around scientific workflows systems that need to be...
Year 2013
-
The Effect of Sterols on Amphotericin B Self-Aggregation in a Lipid Bilayer as Revealed by Free Energy Simulations
PublicationAmphotericin B (AmB) is an effective but toxic antifungal drug, known to increase the permeability of the cell membrane, presumably by assembling into transmembrane pores in a sterol-dependent manner. The aggregation of AmB molecules in a phospholipid bilayer is, thus, crucial for the drug’s activity. To provide an insight into the molecular nature of this process, here, we report an atomistic molecular dynamics simulation study...
Year 2011
-
Structure of Small Platinum Clusters Revised
PublicationW pracy opisano wyniki obliczeń metodą DFT struktury 2-15 atomowych klastrów platyny.
seen 2975 times