A literature review on computational models for laminated composite and sandwich panels - Publication - Bridge of Knowledge

Search

A literature review on computational models for laminated composite and sandwich panels

Abstract

W artykule przedstawiono przegląd modeli obliczeniowych stosowanych w analizie laminowanych powłok kompozytowych i sandwiczowych. W przeglądzie uwzględniono ponad 200 pozycji literatury traktujących o modelach teoretycznych dla płyt i powłok wielo-warstowych oraz/lub o implementacjach numerycznych różnych modeli obliczeniowych. Jako podstawową konkluzję z dokonanego przeglądu, należy uznać, że nie istnieje jeden uniwersalny model matematyczny zdolny do efektywnego reprezentowania ogółu konstrukcji warstwowych. Praktyczna przydatność różnych sformułowań teoretycznych zależy istotnie od specyfiki analizowanego problemu. Przy oczywistych ograniczeniach zdolności obliczeniowych, głównie natury sprzętowej i ekonomicznej, całkiem naturalnym zjawiskiem jest zauważalna tendencja do zmniejszania rzędu dokładności opisu deformacji profilu poprzecznego wraz ze wzrostem stopnia nieliniowości analizowanych zagadnień.

Citations

  • 6 9

    CrossRef

  • 0

    Web of Science

  • 1 5 7

    Scopus

Cite as

Full text

download paper
downloaded 130 times
Publication version
Accepted or Published Version
License
Creative Commons: CC-BY-NC-ND open in new tab

Keywords

Details

Category:
Articles
Type:
publikacja w in. zagranicznym czasopiśmie naukowym (tylko język obcy)
Published in:
CENTRAL EUROPEAN JOURNAL OF ENGINEERING no. 1, pages 59 - 80,
ISSN: 1896-1541
Title of issue:
Central European Journal of Engineering. strony 59 - 80
Publication year:
2011
Bibliographic description:
Kreja I.. A literature review on computational models for laminated composite and sandwich panels. CENTRAL EUROPEAN JOURNAL OF ENGINEERING, 2011, Vol. 1, nr. 1, s.59-80
DOI:
Digital Object Identifier (open in new tab) 10.2478/s13531-011-0005-x
Bibliography: test
  1. Pahr, D. H. & Rammerstorfer, F. G.: A fast multi-scale analyzing tool for the investigation of perforated laminates, Computers & Structures 82, 2004, 227-239. open in new tab
  2. Ladevéze, P.: Multiscale Modeling and Computational Strategies for Composites, WCCM V: Proceedings of the Fifth World Congress on Computational Mechanics, July 7-12, 2002, Vienna, Austria, H.A. Mang, F.G. Rammerstorfer & J. Eberhardsteiner (eds.), CD-ROM, Vienna 2002.
  3. Böhm, H. J. (Ed.): Mechanics of Microstructured Materials, CISM Courses and Lectures No. 464, Springer- Verlag, Vienna 2004. open in new tab
  4. Zhang, W. C. & Evans, K. E.: Numerical prediction of the mechanical properties of anisotropic composite materials, Computers & Structures 29, 1988, 413-422. open in new tab
  5. Noor, A. K. & Burton, W. S.: Assessment of computational models for multilayered composite shells, Applied Mechanics Reviews 43, 1990, 67-97. open in new tab
  6. Kulikov, G. M.: Non-linear analysis of multilayered shells under initial stress, Int. Journal of Non-Linear Mechanics 36, 2001, 323-334. open in new tab
  7. Carrera, E.: Developments, ideas, and evaluations based upon Reissner's Mixed Variational Theorem in the modeling of multilayered plates and shells, Applied Mechanics Reviews 54, 2001, 301-329. open in new tab
  8. Reddy, J. N.: On refined computational models of composite laminates, Int. Journal for Numerical Methods in Engineering 27, 1989, 361-382. open in new tab
  9. Rohwer, K., Friedrichs, S. & Wehmeyer, C.: Analyzing laminated structures from fibre-reinforced composite material -an assessment, Technische Mechanik 25, 2005, 59-79. open in new tab
  10. Başar, Y. & Ding, Y.: Interlaminar stress analysis of composites: layer-wise shell finite elements including transverse strains, Composites Engineering 5, 1995, 485-499. open in new tab
  11. Carrera, E.: An assessment of mixed and classical theories on global and local response of multilayered orthotropic plates, Composite Structures 50, 2000, 183-198. open in new tab
  12. Carrera, E. & Demasi, L.: Classical and advanced multilayered plate elements based upon PVD and RMVT. Part 1: Derivation of finite element matrices, Int. Journal for Numerical Methods in Engineering 55, 2002, 191-231. open in new tab
  13. Carrera, E. & Demasi, L.: Classical and advanced multilayered plate elements based upon PVD and RMVT. Part 2: Numerical implementations, Int. Journal for Numerical Methods in Engineering 55, 2002, 253-291. open in new tab
  14. Chen, C.-M., Kikuchi, N. & Farzad R.-A.: An enhanced asymptotic homogenization method of the static and dynamics of elastic composite laminates, Computers & Structures 82, 2004, 373-382. open in new tab
  15. Lewiński, T.: On recent developments in the homogenization theory of elastic plates and their application to optimal design: Part I, Structural Optimization 6, 1993, 59-64. open in new tab
  16. Rabczuk, T., Kim, J. Y., Samaniego, E. & Belytschko, T.: Homogenization of sandwich structures, Int. Journal for Numerical Methods in Engineering 61, 2004, 1009-1027. open in new tab
  17. Tanov, R. & Tabiei, A.: A note on finite element implementation of sandwich shell homogenization, Int. Journal for Numerical Methods in Engineering 48, 2000, 467-473. open in new tab
  18. Ambartsumyan, S. A.: Theory of Anisotropic Plates, Technomic Publishing Co., Inc., Stamford, 1970.
  19. Sun, C.T. & Chin, H.: Analysis of asymmetric composite laminates, AIAA Journal 26, 1988, 714-718. open in new tab
  20. Saigal, S., Kapania, R. K. & Yang, T. Y.: Geometrically nonlinear finite element analysis of imperfect laminated shells, Journal Composite Materials 20, 1986, 197-214. open in new tab
  21. Whitney, J. M. & Pagano, N. J.: Shear deformation in heterogeneous anisotropic plates, Journal of Applied Mechanics, Trans. ASME 37, 1970, 1031-1036. open in new tab
  22. Dong, S. B. & Tso, F. K. W.: On a laminated orthotropic shell theory including transverse shear deformation, Journal of Applied Mechanics, Trans. ASME 39, 1972, 1091-1096. open in new tab
  23. Reddy, J. N. & Arciniega, R. A.: Shear deformation plate and shell theories: From Stavsky to Present, Mechanics of Advanced Materials and Structures 11, 2004, 535-582. open in new tab
  24. Ghugal, Y. M. & Shimpi, R. P.: A review of refined shear deformation theories of isotropic and anisotropic laminated plates, Journal of Reinforced Plastics and Composites 21, 2002, 775-813. open in new tab
  25. Reissner, E.: Small bending and stretching of sandwich-type shells, NACA Report No. 975, 1950, 483-508. open in new tab
  26. Chandrashekhara, K. & Pavan Kumar, D. V. T. G.: Assessment of shell theories for the static analysis of cross-ply laminated circular cylindrical shells, Thin-Walled Structures 22, 1995, 291-318. open in new tab
  27. Chandrashekhara, K. & Pavan Kumar, D. V. T. G.: Static response of composite circular cylindrical shells studied by different theories, Meccanica 33, 1998, 11-27. open in new tab
  28. Tarn, J.-Q. & Wang, Y.-B.: A refined asymptotic theory and computational model for multilayered composite plates, Computer Methods in Applied Mechanics & Engineering 145, 1997, 167-184. open in new tab
  29. Reddy, J. N. & Chandrashekhara, K.: Nonlinear analysis of laminated shells including transverse shear strains, AIAA Journal 23, 1985, 440-441. open in new tab
  30. Palmerio, A. F., Reddy, J. N. & Schmidt, R.: On a moderate rotation theory of elastic anisotropic shells -Part 1. Theory, Int. Journal of Non-Linear Mechanics 25, 1990, 687-700. open in new tab
  31. Kreja, I., Schmidt, R. & Reddy, J. N.: Finite elements based on a first-order shear deformation moderate rotation shell theory with applications to the analysis of composite structures, Int. Journal Non-Linear Mechanics 32, 1997, 1123-1142. open in new tab
  32. Whitney, J. M.: Shear correction factors for orthotropic laminates under static load, Journal of Applied Mechanics, Trans. ASME 40, 1973, 302-303. open in new tab
  33. Wittrick W. H.: Analytical, three-dimensional elasticity solutions to some plate problems, and some observations on Mindlin's plate theory, Int. Journal of Solids & Structures 23, 1987, 441-464. open in new tab
  34. Vlachoutsis, S.: Shear correction factors for plates and shells, Int. Journal for Numerical Methods in Engineering 33, 1992, 1537-1552. open in new tab
  35. Jemielita, G.: Coefficients of shear correction in transversely nonhomogeneous moderately thick plates, Journal of Theoretical and Applied Mechanics (Polish Society of Theoretical and Applied Mechanics) 40, 2002, 73-84.
  36. Noor, A. K. & Peters, J. M.: A posteriori estimates for shear correction factors in multilayered composite cylinders, Journal of Engineering Mechanics ASCE 115, 1988, 1225-1244. open in new tab
  37. Sze, K. Y., He, L.-W. & Cheung, Y. K.: Predictor-corrector procedures for analysis of laminated plates using standard Mindlin finite element models, Composite Structures 50, 2000, 171-182. open in new tab
  38. Auricchio, F. & Sacco, E.: Partial-mixed formulation and refined models for the analysis of composite laminates within an FSDT, Composite Structures 46, 1999, 103-113. open in new tab
  39. Auricchio, F. & Sacco, E.: A mixed-enhanced finite-element for the analysis of laminated composite plates, Int. Journal for Numerical Methods in Engineering 44, 1999, 1481-1504. open in new tab
  40. Pai, P. F.: A new look at shear correction factors and warping functions of anisotropic laminates, Int. Journal of Solids & Structures 32, 1995, 2295-2313. open in new tab
  41. Rolfes, R. & Rohwer, K.: Improved transverse shear stresses in composite finite elements based on First Order Shear Deformation Theory, Int. Journal for Numerical Methods in Engineering 40, 1997, 51-60. open in new tab
  42. MSC/NASTRAN Encyclopedia for Version 69, Mac Neal-Schwendler Corp., 1996.
  43. Altenbach, H.: An alternative determination of transverse shear stiffnesses for sandwich and laminated plates, Int. Journal of Solids & Structures 37, 2000, 3503-3520. open in new tab
  44. Tanov, R. & Tabiei, A.: A simple correction to the first-order shear deformation shell finite element formulations, Finite Elements in Analysis and Design 35, 2000, 189-197. open in new tab
  45. Reissner, E.: A consistent treatment of transverse shear deformations in laminated anisotropic plates, AIAA Journal 10, 1972, 716-718. open in new tab
  46. Fares, M. E. & Youssif, Y. G.: A refined equivalent single-layer model of geometrically non-linear doubly curved layered shells using mixed variational approach, Int. Journal Non-Linear Mechanics 36, 2001, 117-124. open in new tab
  47. Fares, M. E., Zenkour, A. M. & El-Marghany, M. Kh.: Non-linear thermal effects on the bending response of cross-ply laminated plates using refined first-order theory, Composite Structures 49, 2000, 257-267. open in new tab
  48. Auricchio, F. & Sacco, E.: Refined First-Order Shear Deformation Theory models for composite laminates, Journal of Applied Mechanics, Trans. ASME 70, 2003, 381-390. open in new tab
  49. Qi, Y., Knight Jr., N. F.: A refined first-order shear deformation theory and its justification by plane-strain bending problem of laminated plates, Int. Journal of Solids & Structures 33, 1996, 49-64. open in new tab
  50. Knight Jr., N. F. & Qi, Y.: On a consistent first-order shear deformation theory for laminated plates, Composites, Part B 28B, 1997, 397-405. open in new tab
  51. Reddy, J. N.: A simple higher-order theory for laminated composite plates, Journal of Applied Mechanics, Trans. ASME 51, 1984, 745-752. open in new tab
  52. Khdeir, A. A., Reddy, J. N. & Librescu L.: Analytical solution of a refined shear deformation theory for rectangular composite plates, Int. Journal of Solids & Structures 23, 1987, 1447-1463. open in new tab
  53. Phan, N. D. & Reddy, J. N.: Analysis of laminated composite plates using a higher-order shear deformation theory, Int. Journal for Numerical Methods in Engineering 21, 1985, 2201-2219. open in new tab
  54. Reddy, J. N.: On the generalization of displacement-based laminate theories, Applied Mechanics Reviews 42, 1989, S213-S222. open in new tab
  55. Reddy, J. N. & Liu, C. F.: A higher-order shear deformation theory of laminated elastic shells, Int. Journal of Engineering Sciences 23, 1985, 669-683. open in new tab
  56. Bose, P. & Reddy, J. N.: Analysis of composite plates using various plate theories Part 1: Formulation and Analytical Solutions, Structural Engineering & Mechanics 6, 1998, 583-612. open in new tab
  57. Reddy, J. N.: A general non-linear third-order theory of plates with moderate thickness, Int. Journal of Non-Linear Mechanics 25, 1990, 677-686. open in new tab
  58. I.Kreja: Computational models of laminated composite and sandwich panels page 33 open in new tab
  59. Dennis, S. T.: A Galerkin solution to geometrically nonlinear laminated shallow shell equations, Computers & Structures 63, 1997, 859-874. open in new tab
  60. Simitses, G. J.: Buckling of moderately thick laminated cylindrical shells: A review, Composites Part B 27B, 1996, 581-587. open in new tab
  61. Başar, Y.: Finite-rotation theories for composite laminates, Acta Mechanica 98, 1993, 159-176. open in new tab
  62. Başar, Y., Ding, Y. & Schultz, R.: Refined shear-deformation models for composite laminates with finite rotations, Int. Journal of Solids & Structures 30, 1993, 2611-2638. open in new tab
  63. Balah, M. & Al-Ghamedy, H. N.: Finite element formulation of a third order laminated finite rotation shell element, Computers & Structures 80, 2002, 1975-1990. open in new tab
  64. Simo, J. C., Fox, D. D. & Rifai, M. S.: On a stress resultant geometrically exact shell model. Part III: Computational aspects of the nonlinear theory, Computer Methods in Applied Mechanics & Engineering 79, 1990, 21-70. open in new tab
  65. Dennis, S. T. & Palazotto, A. N.: Transverse shear deformation in orthotropic cylindrical pressure vessels using a higher-order shear theory, AIAA Journal 27, 1989, 1441-1447. open in new tab
  66. Dennis, S. T. & Palazotto, A. N.: Large displacement and rotational formulation for laminated shells including parabolic transverse shear, Int. Journal of Non-Linear Mechanics 25, 1990, 67-85. open in new tab
  67. Naboulsi, S. K. & Palazotto, A. N.: Non-linear static-dynamic finite element formulation for composite shells, Int. Journal of Non-Linear Mechanics 38, 2003, 87-110. open in new tab
  68. Tsai, C. T., Palazotto, A. N. & Dennis, S. T.: Large-rotation snap-through buckling in laminated cylindrical panels, Finite Elements in Analysis and Design 9, 1991, 65-75. open in new tab
  69. Sacco, E. & Reddy, J.N.: On first-and second-order moderate rotation theories of laminated plates, Int. Journal for Numerical Methods in Engineering 33, 1992, 1-17. open in new tab
  70. Moita, J. S., Mota Soares, C. M. & Mota Soares, C. A.: Buckling behaviour of laminated composite structures using a discrete higher-order displacement model, Composite Structures 35, 1996, 75-92. open in new tab
  71. Piskunov, V. G.: An iterative analytical theory in the mechanics of layered composite systems, Mechanics of Composite Materials 39, 2003, 1-16. open in new tab
  72. Librescu, L.: Refined geometrically non-linear theories of anisotropic laminated shells, Quarterly of Applied Mathematics 45, 1987, 1-22. open in new tab
  73. Pagano, N. J. & Hatfield, S.J.: Elastic behavior of multilayered bidirectional composites, AIAA Journal 10, 1972, 931-933. open in new tab
  74. Brank, B.: On composite shell models with piecewise linear warping function, Composite Structures 59, 2003, 163- 171. open in new tab
  75. Brank, B. & Carrera, E.: A family of shear-deformable shell finite elements for composite structures, Computers & Structures 76, 2000, 287-297. open in new tab
  76. Brank, B. & Carrera, E.: Multilayered shell finite element with interlaminar continuous stresses: a refinement of the Reissner-Mindlin formulation, Int. Journal for Numerical Methods in Engineering 48, 2000, 843-874. open in new tab
  77. Carrera, E.: On the use of the Murakami's zig-zag function in the modeling of layered plates and shells, Computers & Structures 82, 2004, 541-554. open in new tab
  78. Carrera, E.: Historical review of zig-zag theories for multilayered plates and shells, Applied Mechanics Reviews 56, 2003, 287-308. open in new tab
  79. Schmidt, R. & Librescu, L.: Further results concerning the refined theory of anisotropic laminated composite plates, Journal of Engineering Mathematics 28, 1994, 407-425. open in new tab
  80. He, L.-H.: Non-linear theory of laminated shells accounting for continuity conditions of displacements and tractions at layer interfaces, Int. Journal of Mechanical Sciences 37, 1995, 161-173.
  81. Shu, X.-P.: A refined theory of laminated shells with higher-order transverse shear deformation, Int. Journal of Solids & Structures 34, 1997, 673-683. open in new tab
  82. Lee, K. H & Cao, L.: A predictor-corrector zig-zag model for the bending of laminated composite plates, Int. Journal of Solids & Structures 33, 1996, 879-897. open in new tab
  83. Soldatos, K. P. & Watson, P.: A method for improving the stress analysis performance of one-and two- dimensional theories for laminated composites, Acta Mechanica 123, 1997, 163-186. open in new tab
  84. Cho, M., Kim, K.-O. & Kim, M.-H.: Efficient higher-order shell theory for laminated composites, Composite Structures 34, 1996, 197-212. open in new tab
  85. Idibi, A, Karama, M, & Touratier, M.: Comparison of various laminated plate theories, Composite Structures 37, 1997, 173-184. open in new tab
  86. Fernandes, A.: A mixed formulation for elastic multilayer plates, Computes Rendus Mecanique 331, 2003, 337- 342. open in new tab
  87. Arya, H., Shimpi, R. P. & Naik, N. K.: A zigzag model for laminated composite beams, Composite Structures 56, 2002, 21-24. open in new tab
  88. Hassis, H.: A high-order theory for static-dynamic analysis of laminated plates using a special warping model, European Journal of Mechanics A / Solids 21, 2002, 323-332. open in new tab
  89. Sutyrin, V. G. & Hodges, D. H.: On asymptotically correct linear laminated plate theory, Int. Journal of Solids & Structures 33, 1996, 3649-3671. open in new tab
  90. Yu, W. & Hodges, D. H.: A geometrically nonlinear shear deformation theory for composite shells, Journal of Applied Mechanics, Trans. ASME 71, 2004, 1-9. open in new tab
  91. Yu, W., Hodges, D. H. & Volovoi, V. V.: Asymptotic generalization of Reissner-Mindlin theory: accurate three- dimensional recovery for composite shells, Computer Methods in Applied Mechanics & Engineering 191, 2002, 5087-5109. open in new tab
  92. Kim, J.-S. & Cho, M.: Enhanced First-Order Shear Deformation Theory for laminated and sandwich plates, Journal of Applied Mechanics, Trans. ASME 72, 2005, 809-817. open in new tab
  93. Ambartsumyan, S. A.: Contributions to the theory of anisotropic layered shells, Applied Mechanics Reviews 15, 1962, 245-249. open in new tab
  94. Habip, L. M.: A survey of modern developments in the analysis of sandwich structures, Applied Mechanics Reviews 18, 1965, 93-98.
  95. Mau, S. T.: A refined laminated plate theory, Journal of Applied Mechanics, Trans. ASME 40, 1973, 606-607. open in new tab
  96. Pagano, N. J.: Stress fields in composite laminates, Int. Journal of Solids & Structures 14, 1978, 385-400. open in new tab
  97. Mawenya, A. S. & Davies, J. D.: Finite element bending analysis of multilayer plates, Int. Journal for Numerical Methods in Engineering 8, 1974, 215-225. open in new tab
  98. Chaudhuri, R. A. & Seide, P.: An approximate method for prediction of transverse shear stresses in a laminated shell, Int. Journal of Solids & Structures 23, 1987, 1145-1161. open in new tab
  99. Chaudhuri, R. A.: Analysis of laminated shear-flexible angle-ply plates, Composite Structures 67, 2005, 71-84. open in new tab
  100. Noor, A. K., Burton, W. S. & Peters, J. M.: Assessment of computational models for multilayered composite cylinders, Int. Journal of Solids & Structures 27, 1991, 1269-1286. open in new tab
  101. Huttelmaier, H. P. & Epstein, M.: A finite element formulation for multilayered and thick shells, Computers & Structures 21, 1985, 1181-1185. open in new tab
  102. Masud, A. & Panahandeh, M.: Finite-Element Formulation for Analysis of Laminated Composites, Journal of Engineering Mechanics ASCE 125, 1999, 1115-1124. open in new tab
  103. Pinsky, P. M. & Kim, K. O.: A multi-director formulation for nonlinear elastic-viscoelastic layered shells, Computers & Structures 24, 1986, 901-913. open in new tab
  104. Krätzig, W. B. & Jun, D.: On 'best' shell models -From classical shells, degenerated and multi-layered concepts to 3D, Archive of Applied Mechanics 73, 2003, 1-25. open in new tab
  105. Naghdi, P. M.: Finite deformations of elastic rods and shells, Finite Elasticity, Proceedings of the IUTAM Symposium, Lehigh University, Bethlehem, PA, USA, August 10-15, 1980, D.E. Carlson & R. T. Shield (eds.), Martinus Nijhoff Publishers, The Hague/Boston/London, 1982, 47-103. open in new tab
  106. Cho, Y.B. & Averill, R.C.: First-order zig-zag sublaminate plate theory and finite element model for laminated composite and sandwich panels, Composite Structures 50, 2000, 1-15. open in new tab
  107. Barbero, E. J., Reddy, J. N. & Teply, J.: An accurate determination of stresses in thick laminates using a generalized plate theory, Int. Journal for Numerical Methods in Engineering 29, 1990, 1-14. open in new tab
  108. Gaudenzi, P., Barboni, R. & Mannini, A.: A finite element evaluation of single-layer and multi-layer theories for the analysis of laminated plates, Composite Structures 30, 1995, 427-440. open in new tab
  109. Carrera, E.: Mixed layer-wise models for multilayered plates analysis, Composite Structures 43, 1998, 57-70. open in new tab
  110. Vu-Quoc, L., Deng, H. & Tan, X. G.: Geometrically-exact sandwich shells: The static case, Computer Methods in Applied Mechanics & Engineering 189, 2000, 167-203. open in new tab
  111. Gruttmann, F. & Wagner, W.: Coupling of 2D-and 3D-composite shell elements in linear and nonlinear applications, Computer Methods in Applied Mechanics & Engineering 129, 1996, 271-287. open in new tab
  112. Williams, T. O. & Addessio, F. L.: A general theory for laminated plates with delaminations, Int. Journal of Solids & Structures 34, 1997, 2003-2024. open in new tab
  113. Li, X. & Liu, D.: Generalized laminate theories based on double superposition hypothesis, Int. Journal for Numerical Methods in Engineering 40, 1997, 1197-1212. open in new tab
  114. Pagano, N.J.: Exact Solutions for Composite Laminates in Cylindrical Bending, Journal of Composite Materials 3, 1969, 389-411 open in new tab
  115. Pagano, N.J.: Exact Solutions for Rectangular Bidirectional Composites and Sandwich Plates, Journal of Composite Materials 4, 1970, 20-34. open in new tab
  116. Pagano, N. J.: Free edge stress fields in composite laminates, Int. Journal of Solids & Structures 14, 1978, 401-406. open in new tab
  117. Bogdanovich, A.E. & Yushanov, S.P.: Three-dimensional variational analysis of Pagano's problems for laminated composite plates, Composites Science & Technology 60, 2000, 2407-2425. open in new tab
  118. Desai, Y. M., Ramtekkar, G. S. & Shah, A. H.: A novel 3D mixed finite-element model for statics of angle-ply laminates, Int. Journal for Numerical Methods in Engineering 57, 2003, 1695-1716. open in new tab
  119. Feng, W. & Hoa, S. V.: Partial hybrid finite elements for composite laminates, Finite Elements in Analysis and Design 30, 1998, 365-382. open in new tab
  120. Kong, J. & Cheung, Y.K.: Three-dimensional finite element analysis of thick laminated plates, Computers & Structures 57, 1995, 1051-1062. open in new tab
  121. Yu, G., Guang-Yau, T., Chaturvedi, S., Adeli, H. & Shao, Q.Z.: A finite element approach to global-local modeling in composite laminate analysis, Computers & Structures 57, 1995, 1035-1044. open in new tab
  122. Cen, S., Yuqiu Long, Y. & Yao, Z.: A new hybrid-enhanced displacement-based element for the analysis of laminated composite plates, Computers & Structures 80, 2002, 819-833. open in new tab
  123. Hossain, S. J., Sinha, P. K. & Sheikh, A. H.: A finite element formulation for the analysis of laminated composite shells, Computers & Structures 82, 2004, 1623-1638. open in new tab
  124. Alfano, G., Auricchio, F., Rosati, L. & Sacco, E.: MITC finite elements for laminated composite plates, Int. Journal for Numerical Methods in Engineering 50, 2001, 707-738. open in new tab
  125. Carrera, E.: A priori vs. a posteriori evaluation of transverse stresses in multilayered orthotropic plates, Composite Structures 48, 2000, 245-260. open in new tab
  126. Das, M., Barut, A., Madenci, E. & Ambur, D.R.: Complete stress field in sandwich panels with a new triangular finite element of single-layer theory, Computer Methods in Applied Mechanics & Engineering 194, 2005, 2969- 3005. open in new tab
  127. Cho, M. & Kim, M.-H.: A postprocess method using a displacement field of higher-order shell theory, Composite Structures 34, 1996, 185-196. open in new tab
  128. Cho, M. & Kim, J.-S.: A postprocess method for laminated shells with a doubly curved nine-noded finite element, Composites, Part B 31, 2000, 65-74. open in new tab
  129. Wisniewski, K. & Schrefler, B.A.: On recovery of stresses for a multi-layered beam element, Engineering Computations 10, 1993, 563-569. open in new tab
  130. Park, B. C., Park, J. W. & Kim, Y. H.: Stress recovery in laminated composite and sandwich panels undergoing finite rotation, Composite Structures 59, 2003, 227-235. open in new tab
  131. Kant, T. & Swaminathan, K.: Estimation of transverse/interlaminar stresses in laminated composites -a selective review and survey of current developments, Composite Structures 49, 2000, 65-75. open in new tab
  132. Hoff, N. J.: Bending and Buckling of Rectangular Sandwich Plates, NACA TN No. 2225, Washington 1950.
  133. Schmit Jr., L.A. & Monforton, G.R.: Finite deflection Discrete Element Analysis of sandwich plates and cylindrical shells with laminated faces, AIAA Journal 8, 1970, 1454-1461. open in new tab
  134. Lewiński, T.: On displacement-based theories of sandwich plates with soft core, Journal of Engineering Mathematics 25, 1991, 223-241. open in new tab
  135. Malcolm, D. J. & Glockner, P. G.: Nonlinear sandwich shell and Cosserat surface theory, Journal of Engineering Mechanics ASCE 98, 1972, 1183-1203.
  136. Glockner, P. G. & Malcolm, D. J.: Lagrangian formulation of sandwich shell theory, Journal of Engineering Mechanics ASCE 99, 1973, 445-456.
  137. Borsellino, C., Calabrese, L. & Valenza, A.: Experimental and numerical evaluation of sandwich composite structures, Composites Science & Technology 64, 2004, 1709-1715. open in new tab
  138. Burton, W. S. & Noor, A. K.: Assessment of computational models for sandwich panels and shells, Computer Methods in Applied Mechanics & Engineering 124, 1995, 125-151. open in new tab
  139. Nettles, A.T.: Basic Mechanics of Laminated Composite Plates, NASA RP-1351, MSFC, Alabama 1994.
  140. Stockton, S. L.: Engineering and Design: Composite Materials for Civil Engineering Structures, Technical Letter No. 1110-2-548, U.S. Army Corps of Engineers Washington, DC 1997.
  141. Hu, H.-T.: Buckling analyses of fiber-composite laminate plates with material nonlinearity, Finite Elements in Analysis & Design 19, 1995, 169-179. open in new tab
  142. Pai, P. F. & Palazotto, A. N.: Nonlinear displacement based finite element analysis of composite shells -A new total Lagrangian formulation, Int. Journal of Solids & Structures 32, 1995, 3047-3073. open in new tab
  143. Wisnom, M. R.: The effect of fibre rotation in ± 45º tension tests on measured shear properties, Composites 26, 1995, 25-32. open in new tab
  144. Abu-Farsakh, G.A., Barakat, S.A. & Al-Zoubi, N.R.: Effect of material nonlinearity in unidirectional composites on the behavior of beam structures, Int. Journal of Solids & Structures 37, 2000, 2673-2694. open in new tab
  145. Woo, K. S., Hong, C. H. & Basu, P. K.: Materially and geometrically nonlinear analysis of laminated anisotropic plates by p-version of FEM, Computers & Structures 81, 2003, 1653-1662. open in new tab
  146. Kennedy, T.C.: Nonlinear viscoelastic analysis of composite plates and shells, Composite Structures 41, 1998, 265- 272. open in new tab
  147. Kłosowski, P. & Woźnica, K.: Numerical treatment of elasto viscoplastic shells in the range of moderate and large rotations, Computational Mechanics 34, 2004, 194-212. open in new tab
  148. Dvorak, G. J.: Composite materials: Inelastic behavior, damage, fatigue and fracture, Int. Journal of Solids & Structures 37, 2000, 155-170. open in new tab
  149. Reddy, J. N.: Analysis of layered composite plates accounting for large deflections and transverse shear strains, Recent Advances in Nonlinear Computational Mechanics, E. Hinton, D. R. J. Owen & C. Taylor (eds.), Pineridge Press Ltd, Swansea 1982, 155-202.
  150. Carvelli, V. & Savoia, M.: Assessment of plate theories for multilayered angle-ply plates, Composite Structures 39, 1997, 197-207. open in new tab
  151. Jaunky, N. & Knight Jr., N.F.: An assessment of shell theories for buckling of circular cylindrical laminated composite panels loaded in axial compression, Int. Journal of Solids and Structures 36, 1999, 3799-3820. open in new tab
  152. Ferreira, A. J. M. & Fernandes, A. A.: A review of numerical methods for the analysis of composite and sandwich structures, Multimaterials Technologies -Solutions and Opportunities, DOGMA Conference in Utrecht, 24-25 October 2000, 71-76.
  153. Toorani, M. H. & Lakis, A. A.: General equations of anisotropic plates and shells including transverse shear deformations, rotary inertia and initial curvature effects, Journal of Sound and Vibration 237, 2000, 561-615. open in new tab
  154. Altenbach, J. & Altenbach, H.: Trends in engineering plate theories, Maintenance & Reliability, Polish Academy of Sciences Quarterly 4/2001, 2001, 21-30.
  155. Piskunov, V. G. & Rasskazov, A. O.: Evolution of the theory of laminated plates and shells, Int. Applied Mechanics (Plenum Publ. Corp.) 38, 2002, 135-166. open in new tab
  156. Qatu M. S.: Recent research advances in the dynamic behavior of shells: 1989-2000, Part 1: Laminated composite shells, Applied Mechanics Reviews 55, 2002, 325-350. open in new tab
  157. Reddy, J. N.: Energy Principles and Variational Methods in Applied Mechanics, John Wiley & Sons, Ltd., New York 2002.
  158. Palmerio, A. F., Reddy, J. N. & Schmidt, R.: On a moderate rotation theory of elastic anisotropic shells -Part 2. FE analysis, Int. Journal of Non-Linear Mechanics 25, 1990, 701-714. open in new tab
  159. Kreja, I. & Schmidt, R.: Moderate Rotation Shell Theory in FEM application, Proceedings of Gdansk University of Technology Civil Eng series LI.1995, 229-249. open in new tab
  160. Panda, S. C. & Natarajan, R.: Finite element analysis of laminated composite plates, Int. Journal of Non-Linear Mechanics 14, 1979, 69-79. open in new tab
  161. Chang, T. Y. & Sawamiphakdi, K.: Large deformation analysis of laminated shells by finite element method, Computers & Structures 13, 1981, 331-340. open in new tab
  162. Jun, S. M. & Hong, C. S.: Buckling behavior of laminated composite cylindrical panels under axial compression, Computers & Structures 29, 1988, 479-490. open in new tab
  163. Kweon, J. H. & Hong, C. S.: An improved arc-length method for postbuckling analysis of composite cylindrical panels, Computers & Structures 53, 1994, 541-549. open in new tab
  164. Wagner W.: Zur Formulierung eines geometrisch nichtlinearen Finite Elementes für zylindrische Faserverbundschalen (On formulation of geometrically nonlinear finite elements for fiber reinforced cylindrical shells) (in German), Statik und Dynamik in Konstruktiven Ingenieurbau, Festschrift Wilfried B. Krätzig, SFB 151 - Berichte nr 23, 1992, B3-B10.
  165. Ferreira, A. J. M. & Barbosa, J. T.: Buckling behaviour of composite shells, Composite Structures 50, 2000, 93-98. open in new tab
  166. Laschet, G. & Jeusette, J.-P.: Postbuckling finite element analysis of composite panels, Composite Structures 14, 1990, 35-48. open in new tab
  167. Rikards, R., Chate, A. & Ozolinsh, O.: Analysis for buckling and vibrations of composite stiffened shells and plates, Composite Structures 51, 2001, 361-370. open in new tab
  168. Haas, D. J. & Lee, W.: A nine-node assumed-strain finite element for composite plates and shells, Computers & Structures 26, 1987, 445-452. open in new tab
  169. Somashekar, B.R., Prathap, G. & Ramesh Babu, C.: A field-consistent four noded laminated anisotropic plate/shell element, Computers & Structures 25, 1987, 345-353. open in new tab
  170. Groenwold, A. & Stander, N.: A 24 d.o.f. four-node flat shell finite element for general unsymmetric orthotropic layered composites, Engineering Computations 15, 1998, 518-543. open in new tab
  171. Dorninger, K.: Computational analysis of composite shells at large deformations, Computer Aided Design in Composite Material Technology, Proceedings of the Int. Conf. Southampton, 1988, C. A. Brebbia, W. P. de Wilde & W. R. Blain (eds.), Springer-Verlag, Berlin 1988, 7/66-7/75. open in new tab
  172. Dorninger, K. & Rammerstorfer, F. G.: A layered composite shell element for elastic and thermoelastic stress and stability analysis at large deformations; Int. Journal for Numerical Methods in Engineering 30, 1990, 833-858. open in new tab
  173. Ramm, E.: A plate/shell element for large deflections and rotations, Proceedings of US-Germany Symp., MIT Boston, August 1976, 264-293.
  174. Brank, B., Perić, D. & Damjanić, F. B.: On implementation of a nonlinear four node shell finite element for thin multilayered elastic shells, Computational Mechanics 16, 1995, 341-359. open in new tab
  175. Kreja, I.: Critical examination of benchmark problems for large rotation analysis of laminated shells, Shell Structures: Theory and Applications, Proc. the 8 th Conf. SSTA, Gdańsk -Jurata, 12-14 October 2005, W. Pietraszkiewicz & C. Szymczak (eds.), Taylor & Francis Group, London 2006, 481-485. open in new tab
  176. Kreja, I. & Schmidt, R.: Large rotations in First Order Shear Deformation FE analysis of laminated shells, Int. Journal Non-Linear Mechanics 41, 2006, 101-123. open in new tab
  177. Kim, K. D.: Buckling behaviour of composite panels using the finite element method, Composite Structures 36, 1996, 33-43. open in new tab
  178. Kim, K. D. & Voyiadjis, G.Z.: Non-linear finite element analysis of composite panels, Composites, Part B 30, 1999, 365-381. open in new tab
  179. Kim, K. D. & Park, T. H.: An 8-node assumed strain element with explicit integration for isotropic and laminated composite shells, Structural Engineering & Mechanics 13, 2002, 387-410. open in new tab
  180. Kim, K. D., Lomboy, G. R. & Han, S. C.: A co-rotational 8-node assumed strain shell element for postbuckling analysis of laminated composite plates and shells, Computational Mechanics 30, 2003, 330-342. open in new tab
  181. Kim, K.-D., Han, S.-D. and Suthasupradit, S.: Geometrically non-linear analysis of laminated composite structures using a 4-node co-rotational shell element with enhanced strains, International Journal of Non-Linear Mechanics 42, 2007, 864 -881. open in new tab
  182. Barut, A., Madenci, E. & Tessler, A.: Nonlinear analysis of laminates through a Mindlin-type shear deformable shallow shell element, Computer Methods in Applied Mechanics & Engineering 143, 1997, 155-173. deformation analysis of laminated composite plates and shells, Structural Engineering and Mechanics 18, 2004, 807-829. open in new tab
  183. Han, S.-D., Tabiei, A. & Park W.-T.: Geometrically nonlinear analysis of laminated composite thin shells using a modied First-order shear deformable element-based Lagrangian shell element, Composite Structures 82, 2008, 465-474. open in new tab
  184. Pai, P. F.: Total-Lagrangian formulation and finite-element analysis of highly flexible plates and shells, Mathematics and Mechanics of Solids 12, 2007, 213-250. open in new tab
  185. Arciniega, R.A. & Reddy, J.N.: Tensor-based finite element formulation for geometrically nonlinear analysis of shell structures, Computer Methods in Applied Mechanics and Engineering 196, 2007, 1048-1073. open in new tab
  186. Hashagen, E., Schellekens, J. C. J., de Borst, R. & Parisch, H.: Finite element procedure for modelling fibre metal laminates, Composite Structures 32, 1995, 255-264. open in new tab
  187. Parisch, H.: A continuum-based shell theory for non-linear applications, Int. Journal for Numerical Methods in Engineering 38, 1995, 1855-1883. open in new tab
  188. Kulikov, G. M. & Plotnikova, S. V.: Simple and effective elements based upon Timoshenko-Mindlin shell theory, Computer Methods in Applied Mechanics & Engineering 191, 2002, 1173-1187. open in new tab
  189. Kulikov, G. M. & Plotnikova, S. V.: Non-linear strain-displacement equations exactly representing large rigid- body motions. Part I: Timoshenko-Mindlin shell theory, Computer Methods in Applied Mechanics & Engineering 192, 2003, 851-875. open in new tab
  190. Zhang, Y.X. & Kim K.S.: Two simple and efficient displacement-based quadrilateral plate elements for the analysis of composite laminated plates, Int. Journal for Numerical Methods in Engineering 61, 2004, 1771-1796. open in new tab
  191. Sze, K. Y., Yao, L.-Q. & Pian, T.H.H.: An eighteen-node hybrid-stress solid-shell element for homogenous and laminated structures, Finite Elements in Analysis & Design 38, 2002, 353-374. open in new tab
  192. Sze, K. Y. & Zheng, S.-J.: A stabilized hybrid-stress solid element for geometrically nonlinear homogeneous and laminated shell analyses, Computer Methods in Applied Mechanics & Engineering 191, 2002, 1945-1966. open in new tab
  193. Bose, P. & Reddy, J. N.: Analysis of composite plates using various plate theories Part 2: Finite element model and numerical results, Structural Engineering & Mechanics 6, 1998, 727-746. open in new tab
  194. Chaplin, C. P. & Palazotto, A. N.: The collapse of composite cylindrical panels with various thickness using Finite Element Analysis, Computers & Structures 60, 1996, 797-815. open in new tab
  195. Carrera, E.: C z 0 requirements-models for the two dimensional analysis of multilayered structures, Composite Structures 37, 1997, 373-383. open in new tab
  196. Carrera, E. & Parisch, H.: An evaluation of geometrical nonlinear effects of thin and moderately thick multilayered composite shells, Composite Structures 40, 1998, 11-24. open in new tab
  197. Parisch, H.: An investigation of a finite rotation four node assumed strain shell element, Int. Journal for Numerical Methods in Engineering 31, 1991, 127-150. open in new tab
  198. Rammerstorfer, F. G., Dorninger, K. & Starlinger, A.: Composite and sandwich shells, in Nonlinear Analysis of Shells by Finite Elements, Rammerstorfer, F. G. (ed.), CISM Courses and Lectures No. 328, Springer-Verlag, Vienna -New York 1992, 131-194. open in new tab
  199. Vu-Quoc, L. & Tan, X.G.: Optimal solid shells for non-linear analyses of multilayer composites. I. Statics, Computer Methods in Applied Mechanics & Engineering 192, 2003, 975-1016. open in new tab
  200. Kulikov, G. M. & Plotnikova, S. V.: Equivalent Single-Layer and Layerwise Shell Theories and Rigid-Body Motions-Part I: Foundations, Mechanics of Advanced Materials & Structures 12, 2005, 275-283. open in new tab
  201. Kulikov, G. M. & Plotnikova, S. V.: Equivalent Single-Layer and Layerwise Shell Theories and Rigid-Body Motions-Part II: Computational Aspects, Mechanics of Advanced Materials & Structures 12, 2005, 331-340. open in new tab
  202. Dakshina Moorthy, C. M. & Reddy, J. N.: Modelling of laminates using a layerwise element with enhanced strains, Int. Journal for Numerical Methods in Engineering 43, 1998, 755-779.
  203. Rammerstorfer, F. G., Dorninger, K., Starlinger, A., Skrna-Jakl, I. C.: Computational methods in composite analysis and design, in [190], 1994, 209-231. open in new tab
  204. Crisfield, M.A., Jelenic, G., Mi, Y., Zhong, H.-G. & Fan, Z.: Some aspects of the non-linear finite element method, Finite Elements in Analysis & Design 27, 1997, 19-40. open in new tab
  205. Aitharaju, V. R. & Averill, R. C.: C 0 zigzag kinematic displacement models for the analysis of laminated composites, Mechanics of Composite Materials & Structures 6, 1999, 31-56. open in new tab
  206. Marcinowski, J.: Geometrically nonlinear static analysis of sandwich plates and shells, Journal of Theoretical and Applied Mechanics (Polish Society of Theoretical and Applied Mechanics) 41, 2003, 561-574.
  207. Ali, R.: Use of finite element technique for the analysis of composite structures, Computers & Structures 58, 1996, 1015-1023. open in new tab
  208. Sze, K. Y., Liu, X. H. & Lo, S. H.: Popular benchmark problems for geometric nonlinear analysis of shells, Finite Elements in Analysis and Design 40, 2004, 1551-1569. open in new tab
Verified by:
Gdańsk University of Technology

seen 177 times

Recommended for you

Meta Tags