A material model of asphalt mixtures based on Monte Carlo simulations - Publication - Bridge of Knowledge

Search

A material model of asphalt mixtures based on Monte Carlo simulations

Abstract

The paper aims to numerically reflect mineral-asphalt mixture structure by a standard FEM software. Laboratory test results are presented due to bending tests of circular notched elements. The result scatter is relatively high. An attempt was made to form a random aggregate distribution in order to obtain various results corresponding to laboratory tests. The material structure calibration, its homogenization and finite element dimensioning are the issues decisive for the objective mixture description. The representative volume element (RVE) is investigated here, while it does not precisely reflect the material structure it displays relevant global material parameters. The simulation procedure applied here makes it possible to introduce the name of Monte Carlo simulation-based constitutive model.

Citations

  • 0

    CrossRef

  • 0

    Web of Science

  • 0

    Scopus

Cite as

Full text

download paper
downloaded 20 times
Publication version
Accepted or Published Version
License
Copyright (2019 Author(s))

Keywords

Details

Category:
Conference activity
Type:
materiały konferencyjne indeksowane w Web of Science
ISSN:
0094-243X
Language:
English
Publication year:
2018
Bibliographic description:
Szydłowski C., Górski J., Stienss M., Smakosz Ł..: A material model of asphalt mixtures based on Monte Carlo simulations, W: , 2018, ,.
DOI:
Digital Object Identifier (open in new tab) 10.1063/1.5091918
Bibliography: test
  1. T. L. Anderson, Fracture mechanics fundamentals and applications(Taylor & Francis, 2005). open in new tab
  2. Y. R. Kim, Modelling of asphalt concrete(ASCE Press Mc GrawHil, 2009).
  3. L. Wang, Mechanics of asphalt Microstructure and micromechanics(ASCE Press Mc GrawHil, 2011).
  4. J. Wimmer, B. Stier, J.W. Simon and S. Reese, Finite Elements in Analysis and Design 110, pp. 43-57 (2016). open in new tab
  5. H. Wang, J. Wang, J. Chen, Engineering Fracture Mechanics 132, pp. 104-119 (2014). open in new tab
  6. T. You, R. K. A. Al-Rub, M. K. Darabi, E. A. Masad and D. N. Little, Construction and Building Materials 28, pp. 531-548 (2012). open in new tab
  7. K. H. Moon, A. C. Falchetto and J. W. Hu, Construction and Building Materials 53, pp. 568-583 (2014). open in new tab
  8. E. Mahmoud, S. Saadeh, H. Hakimelahi and J. Harvey, Road Materials and Pavement Design 15(1), pp. 153- 166 (2013). open in new tab
  9. A. Yin, X. Yang, S. Yang and W. Jiang, Engineering Fracture Mechanics 78, pp. 2414-2428 (2011). open in new tab
  10. T. Schüler, R. Jänicke and H. Steeb, Construction and Building Materials, pp. 96-108 (2016). open in new tab
  11. X. Li and M. O. Marasteanu, International Journal of Fracture 136 pp. 285-308 (2005). open in new tab
  12. M. Galouei, A. Fakhimi, Computers and Geotechnics 65 pp. 126-135 (2015). open in new tab
  13. T. Kanit, S. Forest, I. Galliet, V. Mounoury, D. Jeulin, International Journal of Solids and Structure 40 pp. 3647-3679 (2003). open in new tab
  14. M. Ostoja-Starzewski, Probabilistic Engineering Mechanics 21 pp. 112-132 (2006). open in new tab
  15. T. Pellinen, E. Huuskonen-Snicker, P. Eskelinen, P. O. Martinez, Journal of traffic and transportation engineering 2(1), pp. 30-39 (2015). open in new tab
  16. C. Szydłowski, J. Judycki, Highway Engineering 10, pp. 348-353 (2015) (in Polish).
  17. S.-J. Lee, G. Zi, S. Mun, J. S. Kong, J.-H. Choi, Engineering Fracture Mechanics 141 pp. 212-229 (2015). open in new tab
  18. A. Yin, X. Yang, H. Gao, H. Zhu, Engineering Fracture Mechanics 92 pp. 40-55 (2012). open in new tab
  19. X. F. Wang, Z. J. Yang, J. R. Yates, A. P. Jivkov, C. Zhang, Construction and Building Materials 75 pp. 35-45 (2015). open in new tab
  20. X. Wang, Z. Yang, A. P. Jivkov, Construction and Building Materials 80 pp. 262-272 (2015). open in new tab
Verified by:
Gdańsk University of Technology

seen 88 times

Recommended for you

Meta Tags