A Study on Influence of Normalization Methods on Music Genre Classification Results Employing kNN Algorithms
Abstract
This paper presents a comparison of different normalization methods applied to the set of feature vectors of music pieces. Test results show the influence of min-nlax and Zero-Mean normalization methods, employing different distance functions (Euclidean, Manhattan, Chebyshev, Minkowski) as a pre-processing for genre classification, on k-Nearest Neighbor (kNN) algorithm classification results.
Citations
-
0
CrossRef
-
0
Web of Science
-
0
Scopus
Authors (3)
Cite as
Full text
download paper
downloaded 27 times
- Publication version
- Accepted or Published Version
- DOI:
- Digital Object Identifier (open in new tab) 10.21936/si2013_v34.n2A.45
- License
- open in new tab
Keywords
Details
- Category:
- Articles
- Type:
- artykuły w czasopismach recenzowanych i innych wydawnictwach ciągłych
- Published in:
-
Studia Informatica Pomerania
no. 34,
pages 411 - 423,
ISSN: 2451-0424 - Language:
- English
- Publication year:
- 2013
- Bibliographic description:
- Rosner A., Michalak M., Kostek B.: A Study on Influence of Normalization Methods on Music Genre Classification Results Employing kNN Algorithms// Studia Informatica. -Vol. 34., nr. 2A (111) (2013), s.411-423
- DOI:
- Digital Object Identifier (open in new tab) 10.21936/si2013_v34.n2a.45
- Verified by:
- Gdańsk University of Technology
seen 120 times