Active Site Architecture and Reaction Mechanism Determination of Cold Adapted beta-D-galactosidase from Arthrobacter sp. 32cB - Publication - MOST Wiedzy


Active Site Architecture and Reaction Mechanism Determination of Cold Adapted beta-D-galactosidase from Arthrobacter sp. 32cB


ArthbetaDG is a dimeric, cold-adapted beta-D-galactosidase that exhibits high hydrolytic and transglycosylation activity. A series of crystal structures of its wild form, as well as its ArthbetaDG_E441Q mutein complexes with ligands were obtained in order to describe the mode of its action. The ArthbetaDG_E441Q mutein is an inactive form of the enzyme designed to enable observation of enzyme interaction with its substrate. The resulting three-dimensional structures of complexes: ArthbetaDG_E441Q/LACs and ArthbetaDG/IPTG (ligand bound in shallow mode) and structures of complexes ArthbetaDG_E441Q/LACd, ArthbetaDG/ONPG (ligands bound in deep mode), and galactose ArthbetaDG/GAL and their analysis enabled structural characterization of the hydrolysis reaction mechanism. Furthermore, comparative analysis with mesophilic analogs revealed the most striking differences in catalysis mechanisms. The key role in substrate transfer from shallow to deep binding mode involves rotation of the F581 side chain. It is worth noting that the 10-aa loop restricting access to the active site in mesophilic GH2 betaDGs, in ArthbetaDG is moved outward. This facilitates access of substrate to active site. Such a permanent exposure of the entrance to the active site may be a key factor for improved turnover rate of the cold adapted enzyme and thus a structural feature related to its cold adaptation.


  • 2


  • 2

    Web of Science

  • 2



artykuły w czasopismach
Published in:
ISSN: 1422-0067
Publication year:
Bibliographic description:
Rutkiewicz M., Bujacz A., Wanarska M., Wierzbicka-Woś A., Cieśliński H.: Active Site Architecture and Reaction Mechanism Determination of Cold Adapted beta-D-galactosidase from Arthrobacter sp. 32cB// INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES -Vol. 20,iss. 17 (2019), s.1-17
Digital Object Identifier (open in new tab) 10.3390/ijms20174301
Bibliography: test
  1. Talens-Perales, D.; Górska, A.; Huson, D.H.; Polaina, J.; Marín-Navarro, J. Analysis of Domain Architecture and Phylogenetics of Family 2 Glycoside Hydrolases (GH2). PLoS ONE 2016, 11, e0168035. [CrossRef] [PubMed] open in new tab
  2. Cohn, M.; Monod, J. Purification and properties of the beta-galactosidase (lactase) of Escherichia coli. Biochim. Biophys. Acta 1951, 7, 153-174. [CrossRef] open in new tab
  3. Jacobson, R.H.; Zhang, X.J.; DuBose, R.F.; Matthews, B.W. Three-dimensional structure of beta-galactosidase from E. coli. Nature 1994, 369, 761-766. [CrossRef] [PubMed] open in new tab
  4. Juers, D.H.; Matthews, B.W.; Huber, R.E. LacZ beta-galactosidase: Structure and function of an enzyme of historical and molecular biological importance. Protein Sci. 2012, 21, 1792-1807. [CrossRef] [PubMed] open in new tab
  5. Brás, N.F.; Fernandes, P.A.; Ramos, M.J. QM/MM Studies on the β-Galactosidase Catalytic Mechanism: Hydrolysis and Transglycosylation Reactions. J. Chem. Theory Comput. 2010, 6, 421-433. [CrossRef] [PubMed] open in new tab
  6. Juers, D.H.; Rob, B.; Dugdale, M.L.; Rahimzadeh, N.; Giang, C.; Lee, M.; Matthews, B.W.; Huber, R.E. Direct and indirect roles of His-418 in metal binding and in the activity of beta-galactosidase (E. coli). Protein Sci. 2009, 18, 1281-1292. [CrossRef] [PubMed] open in new tab
  7. Juers, D.H.; Heightman, T.D.; Vasella, A.; McCarter, J.D.; Mackenzie, L.; Withers, S.G.; Matthews, B.W. A structural view of the action of Escherichia coli (lacZ) beta-galactosidase. Biochemistry 2001, 40, 14781-14794. [CrossRef] [PubMed] open in new tab
  8. Harju, M. Milk sugars and minerals as ingredients. Int. J. Dairy Technol. 2001, 54, 61-63. [CrossRef] open in new tab
  9. Harju, M.; Kallioinen, H.; Tossavainen, O. Lactose hydrolysis and other conversions in dairy products: Technological aspects. Int. Dairy J. 2012, 22, 104-109. [CrossRef] open in new tab
  10. Pereira-Rodriguez, A.; Fernandez-Leiro, R.; Gonzalez-Siso, M.I.; Cerdan, M.E.; Becerra, M.; Sanz-Aparicio, J. Structural basis of specificity in tetrameric Kluyveromyces lactis beta-galactosidase. J. Struct. Biol. 2012, 177, 392-401. [CrossRef] open in new tab
  11. Stevenson, D.E.; Stanley, R.A.; Furneaux, R.H. Optimization of alkyl beta-D-galactopyranoside synthesis from lactose using commercially available beta-galactosidases. Biotechnol. Bioeng. 1993, 42, 657-666. [CrossRef] open in new tab
  12. Klewicki, R.; Belina, I.; Wojciechowska, A.; Klewicka, E.; Sójka, M. Synthesis of Galactosyl Mannitol Derivative Using β-Galactosidase from Kluyveromyces lactis. Pol. J. Food Nutr. Sci. 2017, 67, 33-39. [CrossRef] open in new tab
  13. Wojciechowska, A.; Klewicki, R.; Sójka, M.; Klewicka, E. Synthesis of the Galactosyl Derivative of Gluconic Acid with the Transglycosylation Activity of β-Galactosidase. Food Technol. Biotechnol. 2017, 55, 258-265. [CrossRef] open in new tab
  14. Cavicchioli, R.; Charlton, T.; Ertan, H.; Omar, S.M.; Siddiqui, K.S.; Williams, T.J. Biotechnological uses of enzymes from psychrophiles. Microb. Biotechnol. 2011, 4, 449-460. [CrossRef] open in new tab
  15. Cavicchioli, R.; Siddiqui, K.S.; Andrews, D.; Sowers, K.R. Low-temperature extremophiles and their applications. Curr. Opin. Biotechnol. 2002, 13, 253-261. [CrossRef] open in new tab
  16. Pawlak-Szukalska, A.; Wanarska, M.; Popinigis, A.T.; Kur, J. A novel cold-active β-d-galactosidase with transglycosylation activity from the Antarctic Arthrobacter sp. 32cB-Gene cloning, purification and characterization. Process Biochem. 2014, 49, 2122-2133. [CrossRef] open in new tab
  17. Boehm, G.; Fanaro, S.; Jelinek, J.; Stahl, B.; Marini, A. Prebiotic concept for infant nutrition. Acta Paediatr. 2003, 92, 64-67. [CrossRef] open in new tab
  18. Lee, L.Y.; Bharani, R.; Biswas, A.; Lee, J.; Tran, L.A.; Pecquet, S.; Steenhout, P. Normal growth of infants receiving an infant formula containing Lactobacillus reuteri, galacto-oligosaccharides, and fructo-oligosaccharide: A randomized controlled trial. Matern. Health Neonatol. Perinatol. 2015, 1, 9. [CrossRef] open in new tab
  19. Li, M.; Monaco, M.H.; Wang, M.; Comstock, S.S.; Kuhlenschmidt, T.B.; Fahey, G.C., Jr.; Miller, M.J.; Kuhlenschmidt, M.S.; Donovan, S.M. Human milk oligosaccharides shorten rotavirus-induced diarrhea and modulate piglet mucosal immunity and colonic microbiota. ISME J. 2014, 8, 1609-1620. [CrossRef] open in new tab
  20. Hughes, C.; Davoodi-Semiromi, Y.; Colee, J.C.; Culpepper, T.; Dahl, W.J.; Mai, V.; Christman, M.C.; Langkamp-Henken, B. Galactooligosaccharide supplementation reduces stress-induced gastrointestinal dysfunction and days of cold or flu: A randomized, double-blind, controlled trial in healthy university students. Am. J. Clin. Nutr. 2011, 93, 1305-1311. [CrossRef] open in new tab
  21. Kunz, C.; Rudloff, S. Biological functions of oligosaccharides in human milk. Acta Paediatr. 1993, 82, 903-912. [CrossRef] open in new tab
  22. Torres, D.P.; Gonçalves, M.; Teixeira, J.A.; Rodrigues, L.R. Galacto-Oligosaccharides: Production, Properties, Applications, and Significance as Prebiotics. Compr. Rev. Food Sci. Food Saf. 2010, 9, 438-454. [CrossRef] open in new tab
  23. McVeagh, P.; Miller, J.B. Human milk oligosaccharides: Only the breast. Acta Paediatr. 1997, 33, 281-286. [CrossRef] open in new tab
  24. Musilova, S.; Rada, V.; Vlkova, E.; Bunesova, V. Beneficial effects of human milk oligosaccharides on gut microbiota. Benef. Microbes. 2014, 5, 273-283. [CrossRef] open in new tab
  25. Mussatto, S.I.; Mancilha, I.M. Non-digestible oligosaccharides: A review. Carbohydr. Polym. 2007, 68, 587-597. [CrossRef] open in new tab
  26. Oliveira, D.L.; Wilbey, R.A.; Grandison, A.S.; Roseiro, L.B. Milk oligosaccharides: A review. Diary Technol. 2015, 68, 305-321. [CrossRef] open in new tab
  27. Manas, N.H.A.; Illias, R.M.; Mahadi, N.M. Strategy in manipulating transglycosylation activity of glycosyl hydrolase for oligosaccharide production. Crit. Rev. Biotechnol. 2018, 38, 272-293. [CrossRef] open in new tab
  28. Rutkiewicz-Krotewicz, M.; Pietrzyk-Brzezinska, A.J.; Wanarska, M.; Cieslinski, H.; Bujacz, A. In Situ Random Microseeding and Streak Seeding Used for Growth of Crystals of Cold-Adapted beta-D-Galactosidases: Crystal Structure of beta DG from Arthrobacter sp. 32cB. Crystals 2018, 8, 13. [CrossRef] open in new tab
  29. Rutkiewicz-Krotewicz, M.; Pietrzyk-Brzezinska, A.J.; Sekula, B.; Cieśliński, H.; Wierzbicka-Woś, A.; Kur, J.; Bujacz, A. Structural studies of a cold-adapted dimeric β-D-galactosidase from Paracoccus sp. 32d. Acta Cryst. D Struct. Biol. 2016, 72, 1049-1061. [CrossRef] open in new tab
  30. Rutkiewicz, M.; Bujacz, A.; Bujacz, G. Structural features of cold-adapted dimeric GH2 β-D-galactosidase from Arthrobacter sp. 32cB. Biochim. Biophys. Acta (BBA)-Proteins Proteom. 2019, 1867, 776-786. [CrossRef] open in new tab
  31. Matthews, B.W. Solvent content of protein crystals. J. Mol. Biol. 1968, 33, 491-497. [CrossRef] open in new tab
  32. Winn, M.D.; Isupov, M.N.; Murshudov, G.N. Use of TLS parameters to model anisotropic displacements in macromolecular refinement. Acta Cryst. D 2001, 57, 122-133. [CrossRef] open in new tab
  33. Sinnott, M.L.; Souchard, I.J.L. The mechanism of action of β-galactosidase. Effect of aglycone nature and α-deuterium substitution on the hydrolysis of aryl galactosides. Biochem. J. 1973, 133, 89-98. [CrossRef] open in new tab
  34. Hudson, K.L.; Bartlett, G.J.; Diehl, R.C.; Agirre, J.; Gallagher, T.; Kiessling, L.L.; Woolfson, D.N. Carbohydrate-Aromatic Interactions in Proteins. J. Am. Chem. Soc. 2015, 137, 15152-15160. [CrossRef] open in new tab
  35. Malecki, P.H.; Vorgias, C.E.; Petoukhov, M.V.; Svergun, D.I.; Rypniewski, W. Crystal structures of substrate-bound chitinase from the psychrophilic bacterium Moritella marina and its structure in solution. Acta Cryst. D Biol. Cryst. 2014, 70, 676-684. [CrossRef] open in new tab
  36. Ardevol, A.; Rovira, C. Reaction Mechanisms in Carbohydrate-Active Enzymes: Glycoside Hydrolases and Glycosyltransferases. Insights from ab Initio Quantum Mechanics/Molecular Mechanics Dynamic Simulations. J. Am. Chem. Soc. 2015, 137, 7528-7547. [CrossRef] open in new tab
  37. Bujacz, G.; Wrzesniewska, B.; Bujacz, A. Cryoprotection properties of salts of organic acids: A case study for a tetragonal crystal of HEW lysozyme. Acta Cryst. D 2010, 66, 789-796. [CrossRef] open in new tab
  38. Sparta, K.M.; Krug, M.; Heinemann, U.; Mueller, U.; Weiss, M.S. XDSAPP2.0. J. Appl. Crystallogr. 2016, 49, 1085-1092. [CrossRef] open in new tab
  39. Adams, P.D.; Afonine, P.V.; Bunkoczi, G.; Chen, V.B.; Davis, I.W.; Echols, N.; Headd, J.J.; Hung, L.-W.; Kapral, G.J.; Grosse-Kunstleve, R.W.; et al. PHENIX: A comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr. Sect. D 2010, 66, 213-221. [CrossRef] open in new tab
  40. © 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( open in new tab
Verified by:
Gdańsk University of Technology

seen 26 times

Recommended for you

Meta Tags