Application of Electrochemical Impedance Spectroscopy to evaluate cathodically protected coated steel in seawater - Publication - Bridge of Knowledge

Search

Application of Electrochemical Impedance Spectroscopy to evaluate cathodically protected coated steel in seawater

Abstract

Two types of organic coated carbon steel (S235JR2 grade) electrodes were exposed to artificial seawater environment. One prepared type was defect free while the other one had an intentionally introduced φ0,5 cm coating defect. Both kinds of samples were polarized during the exposure to four potentials corresponding to four different cathodic protection levels. Evolution of their EIS spectra is presented in this paper. Results obtained in the experiment indicate that protective organic coating condition could be estimated and monitored in time based on EIS investigations. If a sample is defected EIS allows a recognition of overprotected and unprotected sample. Distinguishing a fully protected sample from partially protected sample based on EIS was troublesome.

Citations

  • 5

    CrossRef

  • 0

    Web of Science

  • 5

    Scopus

Cite as

Full text

download paper
downloaded 137 times
Publication version
Submitted Version
License
Creative Commons: CC-BY-NC-ND open in new tab

Keywords

Details

Category:
Articles
Type:
artykuł w czasopiśmie wyróżnionym w JCR
Published in:
CONSTRUCTION AND BUILDING MATERIALS no. 181, pages 721 - 726,
ISSN: 0950-0618
Language:
English
Publication year:
2018
Bibliographic description:
Narożny M., Żakowski K., Darowicki K.: Application of Electrochemical Impedance Spectroscopy to evaluate cathodically protected coated steel in seawater// CONSTRUCTION AND BUILDING MATERIALS. -Vol. 181, (2018), s.721-726
DOI:
Digital Object Identifier (open in new tab) 10.1016/j.conbuildmat.2018.06.033
Bibliography: test
  1. Z. W. Wicks Jr., F. N. Jones, S. P. Pappas, D. A. Wicks. Organic Coatings: Science and Technology. s.l. open in new tab
  2. P. A. Sørensen, S. Kiil , K. Dam-Johansen, C. E. Weinell, Anticorrosive coatings: a review, J. Coat. open in new tab
  3. Technol. Res. 6 (2009) 135-176. open in new tab
  4. M. Zubielewicz, W. Gnot, Mechanisms of non-toxic anticorrosive pigments in organic waterborne 229 coatings, Prog. Org. Coat. 49 (2004) 359-371. open in new tab
  5. G. Williams, H.N. McMurray, M. J. Loveridge, Inhibition of corrosion-driven organic coating 231 disbondment on galvanised steel by smart release group II and Zn(II)-exchanged bentonite pigments, 232 open in new tab
  6. Electrochim. Acta. 55 (2010) 1740-1748. open in new tab
  7. V. Ashworth, C.J.L. Booker. Cathodic protection: Theory and practice, John Wiley and Sons, New
  8. York, 1986. open in new tab
  9. Seong-Jong Kim, Masazumi Okido, Kyung-Man Moon, An electrochemical study of cathodic 236 protection of steel used for marine structures, Korean J. Chem. Eng. 20 (2003) 560-565. open in new tab
  10. F. Gan, Z. W. Sun, G. Sabde, D. T. Chin, Cathodic Protection to Mitigate External Corrosion of 238 open in new tab
  11. Underground Steel Pipe Beneath Disbonded Coating, Corros. Eng. 50 (1994) 804-816. open in new tab
  12. K. Zakowski, Studying the effectiveness of a modernized cathodic protection system for an offshore 240 platform, Anti-Corros. Method. M. 58 (2011) 167-172. open in new tab
  13. L. Martinez, L. V. Žulj, F. Kapor, Disbonding of underwater-cured epoxy coating caused by cathodic 242 protection current, Corr. Sci. 51 (2009) 2253-2258. open in new tab
  14. Y. R. Yoo, H. H. Cho, S. Take, J. G. Kim, Y. S. Kim, Influence of cathodic protection on the lifetime 244 extension of painted steel structures, Met. Mater. Int. 12 (2006) 255-261. open in new tab
  15. E. L. Koehler, The Mechanism of Cathodic Disbondment of Protective Organic Coatings-Aqueous 246 Displacement at Elevated pH, Corr. Sci. 40 (1984) 5-8. open in new tab
  16. T. Kamimura, H. Kishikawa, Mechanism of Cathodic Disbonding of Three-Layer Polyethylene- 248 open in new tab
  17. Coated Steel Pipe, Corr. Sci. 54 (1998) 979-987. open in new tab
  18. C.F. Barth, A. R. Troiano, Cathodic Protection and Hydrogen in Stress Corrosion Cracking, Corrosion 250 28 (1972) 259-263. open in new tab
  19. L.H. Wolfe, C.C. Burnette, M.W. Joosten, Hydrogen embrittlement of cathodically protected subsea 252 bolting alloys, Mater. Performance 32 (1993).
  20. D, Festy, Cathodic Protection of Steel in Deep Sea: Hydrogen Embrittlement Risk and Cathodic 254 Protection Criteria, Corrosion 2001, Conference materials. open in new tab
  21. 16. R. W. Bosch, J. Hubrecht, W. F. Bogaerts, B. C. Syrett, Electrochemical Frequency Modulation: A 256 New Electrochemical Technique for Online Corrosion Monitoring, Corr. Sci. 57(2001) 60-70. open in new tab
  22. C. Andrade, C. Alonso, Corrosion rate monitoring in the laboratory and on-site, Constr. Build. Mater. 258 10 (1996) 315-328. open in new tab
  23. J. P. Broomfielda, K. Davies, K. Hladky, The use of permanent corrosion monitoring in new and 260 existing reinforced concrete structures, Cement Concrete Comp. 24 (2002) 27-34. open in new tab
  24. K. Zakowski, W. Sokolski, 24-hour characteristic of interaction on pipelines of stray currents leaking 262 from tram tractions, Corr. Sci. 41 (1999) 2099-2111. open in new tab
  25. K. Żakowski, K. Darowicki, Methods of Evaluation of the Corrosion Hazard Caused by Stray Currents 264 to Metal Structures Containing Aggressive Media, Pol. J. Environ. Stud. 9 (2000) 237-241.
  26. K. Zakowski, K. Darowicki, Diagnosis of Reference Electrodes in Cathodic Protection Systems by 266 open in new tab
  27. Electrochemical Impedance Spectroscopy, Corros. Rev. 20 (2011) 391-402. open in new tab
  28. Guofu Qiao, Jinping Oua, Corrosion monitoring of reinforcing steel in cement mortar by EIS and 268 open in new tab
  29. ENA, Electrochim Acta 52 (2007) 8008-819.
  30. M. Szocinski, K. Darowicki, Local impedance spectra of organic coatings, Polym. Degrad. Stabil. 98 270 (2013) 261-265. open in new tab
  31. S. Krakowiak, K. Darowicki, Inspection of rubber linings operating in flue gas desulphurisation units, 272 open in new tab
  32. Prog. Org. Coat. 46 (2003) 211-215. open in new tab
  33. K. Darowicki, P. Slepski, M. Szocinski, Application of the dynamic EIS to investigation of transport 274 within organic coatings, Prog. Org. Coat. 52 (2005) 306-310. open in new tab
  34. 26. NACE International, NACE No. 2/SSPC-SP 10 White Metal Blast Cleaning. open in new tab
  35. 27. ASTM International. ASTM D1141 -98 Standard Practice for the Preparation of Substitute Ocean 277 open in new tab
  36. Water, 2013. open in new tab
Sources of funding:
  • grant NCBiR nr 2012/05/N/ST8/02899
Verified by:
Gdańsk University of Technology

seen 103 times

Recommended for you

Meta Tags